Acta Optica Sinica, Volume. 43, Issue 10, 1013001(2023)

Graphene-Based Hybrid Plasmonic Waveguide with Deep Subwavelength Confinement

Xueqing He1,2, Yuanbo Zhai3, and Pengfei Li1,2、*
Author Affiliations
  • 1Department of Physics, Taiyuan Normal University, Jinzhong 030619, Shanxi, China
  • 2Institute of Computational and Applied Physics, Taiyuan Normal University, Jinzhong 030619, Shanxi, China
  • 3College of Computer Science and Technology, Taiyuan Normal University, Jinzhong 030619, Shanxi, China
  • show less
    References(44)

    [1] Schaller R R. Moore′s law: past, present and future[J]. IEEE Spectrum, 34, 52-59(1997).

    [2] Sorger V J, Oulton R F, Ma R M et al. Toward integrated plasmonic circuits[J]. MRS Bulletin, 37, 728-738(2012).

    [3] Zia R, Selker M D, Catrysse P B et al. Geometries and materials for subwavelength surface plasmon modes[J]. Journal of the Optical Society of America A, 21, 2442-2446(2004).

    [4] Wang M Y, Luan R Q, Su Y et al. Fano resonance and sensing characteristics of MIM waveguide with H-type cavity[J]. Laser & Optoelectronics Progress, 59, 2124002(2022).

    [5] Steinberger B, Hohenau A, Ditlbacher H et al. Dielectric stripes on gold as surface plasmon waveguides[J]. Applied Physics Letters, 88, 094104(2006).

    [6] Wen J, Romanov S, Peschel U. Excitation of plasmonic gap waveguides by nanoantennas[J]. Optics Express, 17, 5925-5932(2009).

    [7] Wen J, Banzer P, Kriesch A et al. Experimental cross-polarization detection of coupling far-field light to highly confined plasmonic gap modes via nanoantennas[J]. Applied Physics Letters, 98, 101109(2011).

    [8] Bozhevolnyi S I, Volkov V S, Devaux E et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature, 440, 508-511(2006).

    [9] Oulton R F, Sorger V J, Genov D A et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation[J]. Nature Photonics, 2, 496-500(2008).

    [10] Xu D, Huang Y G, Wang X Y et al. Hybrid surface plasmon polariton waveguide of low-loss and ultra-small modal area[J]. Acta Optica Sinica, 35, 0623003(2015).

    [11] Yang L, Jiang S L, Sun G B et al. Plasmonic enhanced near-infrared absorption of metal-silicon composite microstructure[J]. Acta Optica Sinica, 40, 2124003(2020).

    [12] Gao W, Wang J Y, Wu Q N. Design and investigation of a metamaterial terahertz broadband bandpass filter based on dual metallic rings[J]. Laser & Optoelectronics Progress, 58, 0516001(2021).

    [13] Zhu H L, Zhang Y, Ye L F et al. Design of terahertz low-loss transmission line and band-stop filter based on spoof surface plasmon polaritons[J]. Acta Optica Sinica, 42, 2024001(2022).

    [14] Guo Z Y, Nie X R, Shen F et al. Actively tunable terahertz switches based on subwavelength graphene waveguide[J]. Nanomaterials, 8, 665(2018).

    [15] Liu M, Yin X B, Ulin-Avila E et al. A graphene-based broadband optical modulator[J]. Nature, 474, 64-67(2011).

    [16] Li H J, Wang L L, Liu J Q et al. Investigation of the graphene based planar plasmonic filters[J]. Applied Physics Letters, 103, 211104(2013).

    [17] Olmon R L, Krenz P M, Jones A C et al. Near-field imaging of optical antenna modes in the mid-infrared[J]. Optics Express, 16, 20295-20305(2008).

    [18] Breusing M, Ropers C, Elsaesser T. Ultrafast carrier dynamics in graphite[J]. Physical Review Letters, 102, 086809(2009).

    [19] Yu Y J, Zhao Y, Ryu S et al. Tuning the graphene work function by electric field effect[J]. Nano Letters, 9, 3430-3434(2009).

    [20] He X Y. Tunable terahertz graphene metamaterials[J]. Carbon, 82, 229-237(2015).

    [21] Gan X T, Shiue R J, Gao Y D et al. Chip-integrated ultrafast graphene photodetector with high responsivity[J]. Nature Photonics, 7, 883-887(2013).

    [22] Qu S, Ma C C, Liu H X. Tunable graphene-based hybrid plasmonic modulators for subwavelength confinement[J]. Scientific Reports, 7, 5190(2017).

    [23] Nikitin A Y, Guinea F, García-Vidal F J et al. Edge and waveguide terahertz surface plasmon modes in graphene microribbons[J]. Physical Review B, 84, 161407(2011).

    [24] He S L, Zhang X Z, He Y R. Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI[J]. Optics Express, 21, 30664-30673(2013).

    [25] Liu P H, Zhang X Z, Ma Z H et al. Surface plasmon modes in graphene wedge and groove waveguides[J]. Optics Express, 21, 32432-32440(2013).

    [26] Xu W, Zhu Z H, Liu K et al. Dielectric loaded graphene plasmon waveguide[J]. Optics Express, 23, 5147-5153(2015).

    [27] Zhou X T, Zhang T, Chen L et al. A graphene-based hybrid plasmonic waveguide with ultra-deep subwavelength confinement[J]. Journal of Lightwave Technology, 32, 3597-3601(2014).

    [28] Sun Y, Zheng Z, Cheng J T et al. Graphene surface plasmon waveguides incorporating high-index dielectric ridges for single mode transmission[J]. Optics Communications, 328, 124-128(2014).

    [29] Chen M, Sheng P C, Sun W et al. A symmetric terahertz graphene-based hybrid plasmonic waveguide[J]. Optics Communications, 376, 41-46(2016).

    [30] Cui J, Sun Y, Wang L et al. Graphene plasmonic waveguide based on a high-index dielectric wedge for compact photonic integration[J]. Optik, 127, 152-155(2016).

    [31] Wan P, Yang C H, Liu Z. Channel hybrid plasmonic modes in dielectric-loaded graphene groove waveguides[J]. Optics Communications, 420, 72-77(2018).

    [32] He X Q, Ning T G, Zheng J J et al. Deep-subwavelength light transmission in hybrid graphene-dielectric slot waveguide[J]. Journal of Optics, 21, 095001(2019).

    [33] He X Q, Ning T G, Pei L et al. Deep subwavelength graphene-dielectric hybrid plasmonic waveguide for compact photonic integration[J]. Results in Physics, 21, 103834(2021).

    [34] He X Q, Ning T G, Lu S H et al. Ultralow loss graphene-based hybrid plasmonic waveguide with deep-subwavelength confinement[J]. Optics Express, 26, 10109-10118(2018).

    [35] He X Q, Ning T G, Pei L et al. Tunable hybridization of graphene plasmons and dielectric modes for highly confined light transmit at terahertz wavelength[J]. Optics Express, 27, 5961-5972(2019).

    [36] Parvaei B, Saghai H R, Eldlio M. Analysis and simulation of terahertz graphene-based plasmonic waveguide[J]. Optical and Quantum Electronics, 50, 303(2018).

    [37] Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 332, 1291-1294(2011).

    [38] Hanson G W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 103, 064302(2008).

    [39] Gan C H. Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection[J]. Applied Physics Letters, 101, 111609(2012).

    [40] Zhang Z. Silicon based photonic devices: design, fabrication and characterization[D](2008).

    [41] Kwak S S, Lin S S, Lee J H et al. Triboelectrification-induced large electric power generation from a single moving droplet on graphene/polytetrafluoroethylene[J]. ACS Nano, 10, 7297-7302(2016).

    [42] Buckley R, Berini P. Figures of merit for 2D surface plasmon waveguides and application to metal stripes[J]. Optics Express, 15, 12174-12182(2007).

    [43] Efetov D K, Kim P. Controlling electron-phonon interactions in graphene at ultrahigh carrier densities[J]. Physical Review Letters, 105, 256805(2010).

    [44] Han Z H, Bozhevolnyi S I. Radiation guiding with surface plasmon polaritons[J]. Reports on Progress in Physics, 76, 016402(2013).

    Tools

    Get Citation

    Copy Citation Text

    Xueqing He, Yuanbo Zhai, Pengfei Li. Graphene-Based Hybrid Plasmonic Waveguide with Deep Subwavelength Confinement[J]. Acta Optica Sinica, 2023, 43(10): 1013001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Integrated Optics

    Received: Nov. 2, 2022

    Accepted: Jan. 9, 2023

    Published Online: May. 9, 2023

    The Author Email: Li Pengfei (lipf@tynu.edu.cn)

    DOI:10.3788/AOS221917

    Topics