Laser & Optoelectronics Progress, Volume. 61, Issue 8, 0800001(2024)

Diffuse Optical Imaging Technologies and Applications (Invited)

Bowen Song and Yanyu Zhao*
Author Affiliations
  • School of Engineering Medicine, Beihang University, Beijing 100191, China
  • show less
    References(133)

    [1] Gibson A, Dehghani H. Diffuse optical imaging[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367, 3055-3072(2009).

    [2] Jin M. Investigations on radiative transfer equation-based diffuse optical tomography[D](2010).

    [3] Arridge S R. Optical tomography in medical imaging[J]. Inverse Problems, 15, R41-R93(1999).

    [4] Taylor-Williams M, Spicer G, Bale G et al. Noninvasive hemoglobin sensing and imaging: optical tools for disease diagnosis[J]. Journal of Biomedical Optics, 27, 080901(2022).

    [5] Nitzan M, Nitzan I, Arieli Y. The various oximetric techniques used for the evaluation of blood oxygenation[J]. Sensors, 20, 4844(2020).

    [7] Pretto J J, Roebuck T, Beckert L et al. Clinical use of pulse oximetry: official guidelines from the Thoracic Society of Australia and New Zealand[J]. Respirology, 19, 38-46(2014).

    [8] Webster J G[M]. Design of pulse oximeters(1997).

    [9] Yoshiya I, Shimada Y, Tanaka K. Spectrophotometric monitoring of arterial oxygen saturation in the fingertip[J]. Medical and Biological Engineering and Computing, 18, 27-32(1980).

    [10] Chan E D, Chan M M, Chan M M. Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations[J]. Respiratory Medicine, 107, 789-799(2013).

    [11] Lee H, Kim E, Lee Y S et al. Toward all-day wearable health monitoring: an ultralow-power, reflective organic pulse oximetry sensing patch[J]. Science Advances, 4, eaas9530(2018).

    [12] Li G, Wang Y, Lin L et al. Dynamic spectrum: a brand-new non-invasive blood component measure method[C], 1960-1963(2006).

    [13] Wang Y, Li G, Lin L et al. Study on the error in the dynamic spectrum method relative with the pathlength factor as a function of wavelength[C], 6679-6682(2006).

    [14] Hornberger C, Wabnitz H. Approaches for calibration and validation of near-infrared optical methods for oxygenation monitoring[J]. Biomedizinische Technik, 63, 537-546(2018).

    [15] Brimacombe J, Keller C, Margreiter J. A pilot study of left tracheal pulse oximetry[J]. Anesthesia & Analgesia, 91, 1003-1006(2000).

    [16] Brimacombe J, Keller C. Successful pharyngeal pulse oximetry in low perfusion states[J]. Canadian Journal of Anaesthesia, 47, 907-909(2000).

    [17] Kyriacou P A, Powell S, Langford R M et al. Esophageal pulse oximetry utilizing reflectance photoplethysmography[J]. IEEE Transactions on Biomedical Engineering, 49, 1360-1368(2002).

    [18] del Campo F, Crespo A, Cerezo-Hernández A et al. Oximetry use in obstructive sleep apnea[J]. Expert Review of Respiratory Medicine, 12, 665-681(2018).

    [19] Chai-Coetzer C L, Antic N A, Rowland L S et al. A simplified model of screening questionnaire and home monitoring for obstructive sleep apnoea in primary care[J]. Thorax, 66, 213-219(2011).

    [20] Mahle W T, Newburger J W, Matherne G P et al. Role of pulse oximetry in examining newborns for congenital heart disease: a scientific statement from the AHA and AAP[J]. Pediatrics, 124, 823-836(2009).

    [21] Ewer A K, Furmston A T, Middleton L J et al. Pulse oximetry as a screening test for congenital heart defects in newborn infants: a test accuracy study with evaluation of acceptability and cost-effectiveness[J]. Clinical Governance: an International Journal, 17, 1-184(2012).

    [22] Martin G R, Ewer A K, Gaviglio A et al. Updated strategies for pulse oximetry screening for critical congenital heart disease[J]. Pediatrics, 146, e20191650(2020).

    [23] Jullien S, Huss G, Weigel R. Supporting recommendations for childhood preventive interventions for primary health care: elaboration of evidence synthesis and lessons learnt[J]. BMC Pediatrics, 21, 356(2021).

    [24] Wick K D, Matthay M A, Ware L B. Pulse oximetry for the diagnosis and management of acute respiratory distress syndrome[J]. The Lancet Respiratory Medicine, 10, 1086-1098(2022).

    [25] Friedman E, Krupsky S, Lane A M et al. Ocular blood flow velocity in age-related macular degeneration[J]. Ophthalmology, 102, 640-646(1995).

    [26] Patel V, Rassam S, Newsom R et al. Retinal blood flow in diabetic retinopathy[J]. BMJ, 305, 678-683(1992).

    [27] Yoshida A, Feke G T, Morales-Stoppello J et al. Retinal blood flow alterations during progression of diabetic retinopathy[J]. Archives of Ophthalmology, 101, 225-227(1983).

    [28] Christoffersen N L B, Larsen M. Pathophysiology and hemodynamics of branch retinal vein occlusion[J]. Ophthalmology, 106, 2054-2062(1999).

    [29] Flammer J, Orgül S, Costa V P et al. The impact of ocular blood flow in glaucoma[J]. Progress in Retinal and Eye Research, 21, 359-393(2002).

    [30] Garg A K, Knight D, Lando L et al. Advances in retinal oximetry[J]. Translational Vision Science & Technology, 10, 5(2021).

    [31] di Leo G, Trimboli R M, Sella T et al. Optical imaging of the breast: basic principles and clinical applications[J]. American Journal of Roentgenology, 209, 230-238(2017).

    [32] O'Sullivan T D, Cerussi A E, Cuccia D J et al. Diffuse optical imaging using spatially and temporally modulated light[J]. Journal of Biomedical Optics, 17, 071311(2012).

    [33] Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application[J]. NeuroImage, 63, 921-935(2012).

    [34] Lloyd-Fox S, Blasi A, Elwell C E. Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy[J]. Neuroscience & Biobehavioral Reviews, 34, 269-284(2010).

    [35] Wilson R H, Vishwanath K, Mycek M A. Optical methods for quantitative and label-free sensing in living human tissues: principles, techniques, and applications[J]. Advances in Physics: X, 1, 523-543(2016).

    [36] Cuccia D J, Bevilacqua F, Durkin A J et al. Quantitation and mapping of tissue optical properties using modulated imaging[J]. Journal of Biomedical Optics, 14, 024012(2009).

    [37] Orlova A G, Yu Kirillin M, Volovetsky A B et al. Diffuse optical spectroscopy monitoring of oxygen state and hemoglobin concentration during SKBR-3 tumor model growth[J]. Laser Physics Letters, 14, 015601(2017).

    [38] Höckel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects[J]. JNCI: Journal of the National Cancer Institute, 93, 266-276(2001).

    [39] Vaupel P, Harrison L. Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response[J]. The Oncologist, 9, 4-9(2004).

    [40] Brown J Q, Wilke L G, Geradts J et al. Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo[J]. Cancer Research, 69, 2919-2926(2009).

    [41] Boer L L, Molenkamp B G, Bydlon T M et al. Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries[J]. Breast Cancer Research and Treatment, 152, 509-518(2015).

    [42] Vishwanath K, Yuan H, Barry W T et al. Using optical spectroscopy to longitudinally monitor physiological changes within solid tumors[J]. Neoplasia, 11, 889-900(2009).

    [43] Vishwanath K, Klein D H, Chang K et al. Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts[J]. Journal of Biomedical Optics, 14, 054051(2009).

    [44] Rajaram N, Reesor A F, Mulvey C S et al. Non-invasive, simultaneous quantification of vascular oxygenation and glucose uptake in tissue[J]. PLoS One, 10, e0117132(2015).

    [45] Yu Y H, Zhu X, Mo Q G et al. Prediction of neoadjuvant chemotherapy response using diffuse optical spectroscopy in breast cancer[J]. Clinical and Translational Oncology, 20, 524-533(2018).

    [46] Kukreti S, Cerussi A E, Tanamai W et al. Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy[J]. Radiology, 254, 277-284(2010).

    [47] Hockel M, Schlenger K, Aral B et al. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix[J]. Cancer Research, 56, 4509-4515(1996).

    [48] Brizel D M, Scully S P, Harrelson J M et al. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma[J]. Cancer Research, 56, 941-943(1996).

    [49] Herzig M, Christofori G. Recent advances in cancer research: mouse models of tumorigenesis[J]. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1602, 97-113(2002).

    [50] Degenhardt K, White E. A mouse model system to genetically dissect the molecular mechanisms regulating tumorigenesis[J]. Clinical Cancer Research, 12, 5296-5304(2006).

    [51] Konecky S D, Wilson R H, Hagen N A et al. Hyperspectral optical tomography of intrinsic signals in the rat cortex[J]. Neurophotonics, 2, 045003(2015).

    [52] Chen J, Venugopal V, Intes X. Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates[J]. Biomedical Optics Express, 2, 871-886(2011).

    [53] Konecky S D, Mazhar A, Cuccia D et al. Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light[J]. Optics Express, 17, 14780-14790(2009).

    [54] Grosenick D, Rinneberg H, Cubeddu R et al. Review of optical breast imaging and spectroscopy[J]. Journal of Biomedical Optics, 21, 091311(2016).

    [55] Pisano E D, Gatsonis C, Hendrick E et al. Diagnostic performance of digital versus film mammography for breast-cancer screening[J]. New England Journal of Medicine, 353, 1773-1783(2005).

    [56] Choe R, Konecky S D, Corlu A et al. Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography[J]. Journal of Biomedical Optics, 14, 024020(2009).

    [57] Wang Y H, Li S P, Wang Y R et al. Compact fiber-free parallel-plane multi-wavelength diffuse optical tomography system for breast imaging[J]. Optics Express, 30, 6469-6486(2022).

    [58] Choe R, Corlu A, Lee K et al. Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI[J]. Medical Physics, 32, 1128-1139(2005).

    [59] Eggebrecht A T, Ferradal S L, Robichaux-Viehoever A et al. Mapping distributed brain function and networks with diffuse optical tomography[J]. Nature Photonics, 8, 448-454(2014).

    [60] Uchitel J, Blanco B, Collins-Jones L et al. Cot-side imaging of functional connectivity in the developing brain during sleep using wearable high-density diffuse optical tomography[J]. NeuroImage, 265, 119784(2023).

    [61] Zeff B W, White B R, Dehghani H et al. Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography[J]. Proceedings of the National Academy of Sciences of the United States of America, 104, 12169-12174(2007).

    [62] Mimura T, Okawa S, Kawaguchi H et al. Imaging the human thyroid using three-dimensional diffuse optical tomography: a preliminary study[J]. Applied Sciences, 11, 1670(2021).

    [63] Fujii H, Yamada Y, Kobayashi K et al. Modeling of light propagation in the human neck for diagnoses of thyroid cancers by diffuse optical tomography[J]. International Journal for Numerical Methods in Biomedical Engineering, 33, e2826(2017).

    [64] Li C L, Fisher C, Wilson B C et al. Preclinical evaluation of a clinical prototype transrectal diffuse optical tomography system for monitoring photothermal therapy of focal prostate cancer[J]. Journal of Biomedical Optics, 27, 026001(2022).

    [65] Zhu Q, Huang M M, Chen N G et al. Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases[J]. Neoplasia, 5, 379-388(2003).

    [66] Xu C, Vavadi H, Merkulov A et al. Ultrasound-guided diffuse optical tomography for predicting and monitoring neoadjuvant chemotherapy of breast cancers[J]. Ultrasonic Imaging, 38, 5-18(2016).

    [67] Althobaiti M, Vavadi H, Zhu Q. Diffuse optical tomography reconstruction method using ultrasound images as prior for regularization matrix[J]. Journal of Biomedical Optics, 22, 026002(2017).

    [68] Cochran J M, Busch D R, Lin L et al. Hybrid time-domain and continuous-wave diffuse optical tomography instrument with concurrent, clinical magnetic resonance imaging for breast cancer imaging[J]. Journal of Biomedical Optics, 24, 051409(2019).

    [69] Weissleder R, Nahrendorf M. Advancing biomedical imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 14424-14428(2015).

    [70] McGinty J, Stuckey D W, Soloviev V Y et al. In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse[J]. Biomedical Optics Express, 2, 1907-1917(2011).

    [71] Kumar A T N, Raymond S B, Dunn A K et al. A time domain fluorescence tomography system for small animal imaging[J]. IEEE Transactions on Medical Imaging, 27, 1152-1163(2008).

    [72] Zhang L M, Cheng N, Liu H et al. High-sensitivity dynamic diffuse fluorescence tomography system for fluorescence pharmacokinetics[J]. Journal of Biomedical Optics, 27, 046002(2022).

    [73] Nothdurft R E, Patwardhan S V, Akers W J et al. In vivo fluorescence lifetime tomography[J]. Journal of Biomedical Optics, 14, 024004(2009).

    [74] Shen Z M, Lu Z Y, Chhatbar P Y et al. An artery-specific fluorescent dye for studying neurovascular coupling[J]. Nature Methods, 9, 273-276(2012).

    [75] Hille C, Berg M, Bressel L et al. Time-domain fluorescence lifetime imaging for intracellular pH sensing in living tissues[J]. Analytical and Bioanalytical Chemistry, 391, 1871-1879(2008).

    [76] Ho Y P, Chen H H, Leong K W et al. Evaluating the intracellular stability and unpacking of DNA nano complexes by quantum dots-FRET[J]. Journal of Controlled Release, 116, 83-89(2006).

    [77] Berezin M Y, Lee H, Akers W et al. Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems[J]. Biophysical Journal, 93, 2892-2899(2007).

    [78] Graves E, Weissleder R, Ntziachristos V. Fluorescence molecular imaging of small animal tumor models[J]. Current Molecular Medicine, 4, 419-430(2004).

    [79] Corlu A, Choe R, Durduran T et al. Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans[J]. Optics Express, 15, 6696-6716(2007).

    [80] Fortin P Y, Genevois C, Koenig A et al. Detection of brain tumors using fluorescence diffuse optical tomography and nanoparticles as contrast agents[J]. Journal of Biomedical Optics, 17, 126004(2012).

    [81] Zhang W, Wu L H, Li J et al. Combined hemoglobin and fluorescence diffuse optical tomography for breast tumor diagnosis: a pilot study on time-domain methodology[J]. Biomedical Optics Express, 4, 331-348(2013).

    [82] Tichauer K M, Samkoe K S, Sexton K J et al. In vivo quantification of tumor receptor binding potential with dual-reporter molecular imaging[J]. Molecular Imaging and Biology, 14, 584-592(2012).

    [83] Patwardhan S V, Bloch S R, Achilefu S et al. Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice[J]. Optics Express, 13, 2564-2577(2005).

    [84] Ntziachristos V, Tung C H, Bremer C et al. Fluorescence molecular tomography resolves protease activity in vivo[J]. Nature Medicine, 8, 757-761(2002).

    [85] Zhang G L, Pu H S, He W et al. Full-direct method for imaging pharmacokinetic parameters in dynamic fluorescence molecular tomography[J]. Applied Physics Letters, 106, 081110(2015).

    [86] Liu F, Cao X, He W et al. Monitoring of tumor response to cisplatin by subsurface fluorescence molecular tomography[J]. Journal of Biomedical Optics, 17, 040504(2012).

    [87] Ntziachristos V, Schellenberger E A, Ripoll J et al. Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate[J]. Proceedings of the National Academy of Sciences of the United States of America, 101, 12294-12299(2004).

    [88] Chi C W, Du Y, Ye J Z et al. Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology[J]. Theranostics, 4, 1072-1084(2014).

    [89] Hu Z H, Fang C, Li B et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows[J]. Nature Biomedical Engineering, 4, 259-271(2020).

    [90] Leblond F, Davis S C, Valdés P A et al. Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications[J]. Journal of Photochemistry and Photobiology B: Biology, 98, 77-94(2010).

    [91] Darne C, Lu Y J, Sevick-Muraca E M. Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update[J]. Physics in Medicine and Biology, 59, R1-R64(2014).

    [92] Fang E X, Wang J J, Hu D F et al. Adaptive monotone fast iterative shrinkage thresholding algorithm for fluorescence molecular tomography[J]. IET Science, Measurement & Technology, 9, 587-595(2015).

    [93] Kepshire D, Mincu N, Hutchins M et al. A microcomputed tomography guided fluorescence tomography system for small animal molecular imaging[J]. The Review of Scientific Instruments, 80, 043701(2009).

    [94] Davis S C, Pogue B W, Springett R et al. Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue[J]. The Review of Scientific Instruments, 79, 064302(2008).

    [95] Gruber J, Paliwal A, Ghadyani H et al. High-frequency ultrasound-guided fluorescence tomography of protoporphyrin IX in subcutaneous tumors[C], BMB5(2010).

    [96] Ale A, Schulz R B, Sarantopoulos A et al. Imaging performance of a hybrid X-ray computed tomography-fluorescence molecular tomography system using priors[J]. Medical Physics, 37, 1976-1986(2010).

    [97] Lin Y T, Barber W C, Iwanczyk J S et al. Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system[J]. Optics Express, 18, 7835-7850(2010).

    [98] Lo P A, Su S P, Chiang H K. Small-animal 360-deg fluorescence diffuse optical tomography using structural prior information from ultrasound imaging[J]. Journal of Biomedical Optics, 25, 036001(2020).

    [99] Lavaud J, Henry M, Gayet P et al. Noninvasive monitoring of liver metastasis development via combined multispectral photoacoustic imaging and fluorescence diffuse optical tomography[J]. International Journal of Biological Sciences, 16, 1616-1628(2020).

    [100] Li T X, Qin Z P, Chen W T et al. Wide-field fluorescence tomography with composited epi-illumination of multi-frequency sinusoidal patterns[J]. Applied Optics, 56, 8283-8290(2017).

    [101] Chong S H, Markel V A, Parthasarathy A B et al. Algorithms and instrumentation for rapid spatial frequency domain fluorescence diffuse optical imaging[J]. Journal of Biomedical Optics, 27, 116002(2022).

    [102] Meng H, Wang K, Gao Y et al. Adaptive Gaussian weighted Laplace prior regularization enables accurate morphological reconstruction in fluorescence molecular tomography[J]. IEEE Transactions on Medical Imaging, 38, 2726-2734(2019).

    [103] Kong L X, An Y, Liang Q et al. Reconstruction for fluorescence molecular tomography via adaptive group orthogonal matching pursuit[J]. IEEE Transactions on Bio-Medical Engineering, 67, 2518-2529(2020).

    [104] Jiang S X, Liu J, An Y et al. Fluorescence molecular tomography based on group sparsity priori for morphological reconstruction of glioma[J]. IEEE Transactions on Biomedical Engineering, 67, 1429-1437(2020).

    [105] Meng H, Gao Y, Yang X et al. K-nearest neighbor based locally connected network for fast morphological reconstruction in fluorescence molecular tomography[J]. IEEE Transactions on Medical Imaging, 39, 3019-3028(2020).

    [106] Zhang P, Fan G D, Xing T T et al. UHR-DeepFMT: ultra-high spatial resolution reconstruction of fluorescence molecular tomography based on 3-D fusion dual-sampling deep neural network[J]. IEEE Transactions on Medical Imaging, 40, 3217-3228(2021).

    [107] Dan M, Liu M H, Gao F. Real-time implementation of single-pixel spatial frequency domain imaging[J]. Chinese Journal of Lasers, 49, 0507207(2022).

    [108] Zhao Y Y, Song B W, Wang M et al. Halftone spatial frequency domain imaging enables kilohertz high-speed label-free non-contact quantitative mapping of optical properties for strongly turbid media[J]. Light: Science & Applications, 10, 245(2021).

    [109] Zhao Y Y, Deng Y, Yue S H et al. Direct mapping from diffuse reflectance to chromophore concentrations in multi-fx spatial frequency domain imaging (SFDI) with a deep residual network (DRN)[J]. Biomedical Optics Express, 12, 433-443(2020).

    [110] Zhao Y Y, Deng Y, Bao F et al. Deep learning model for ultrafast multifrequency optical property extractions for spatial frequency domain imaging[J]. Optics Letters, 43, 5669-5672(2018).

    [111] Zhao Y Y, Pilvar A, Tank A et al. Shortwave-infrared meso-patterned imaging enables label-free mapping of tissue water and lipid content[J]. Nature Communications, 11, 5355(2020).

    [112] Chen X L, Lin W H, Wang C G et al. In vivo real-time imaging of cutaneous hemoglobin concentration, oxygen saturation, scattering properties, melanin content, and epidermal thickness with visible spatially modulated light[J]. Biomedical Optics Express, 8, 5468(2017).

    [113] Saager R B, Ata Sharif M D et al. In vivo isolation of the effects of melanin from underlying hemodynamics across skin types using spatial frequency domain spectroscopy[J]. Journal of Biomedical Optics, 21, 057001(2016).

    [114] Gardner A R, Venugopalan V. Accurate and efficient Monte Carlo solutions to the radiative transport equation in the spatial frequency domain[J]. Optics Letters, 36, 2269-2271(2011).

    [115] Song B W, Yin X M, Fan Y B et al. Quantitative spatial mapping of tissue water and lipid content using spatial frequency domain imaging in the 900- to 1000-nm wavelength region[J]. Journal of Biomedical Optics, 27, 105005(2022).

    [116] Zhong X X, Huang G W, Miu H B et al. Noninvasive quantitative assessment of burn degree based on spatial frequency-domain imaging[J]. Chinese Journal of Lasers, 49, 2407205(2022).

    [117] Kang X, Zhang Y, Ren H M et al. An approach for extracting optical and physiological parameters of human skin tissue based on spatial frequency domain imaging[J]. Chinese Journal of Lasers, 49, 0507210(2022).

    [118] Yafi A, Muakkassa F K, Pasupneti T et al. Quantitative skin assessment using spatial frequency domain imaging (SFDI) in patients with or at high risk for pressure ulcers[J]. Lasers in Surgery and Medicine, 49, 827-834(2017).

    [119] Nguyen J Q M, Crouzet C, Mai T et al. Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity[J]. Journal of Biomedical Optics, 18, 066010(2013).

    [120] Mazhar A, Saggese S, Pollins A C et al. Noncontact imaging of burn depth and extent in a porcine model using spatial frequency domain imaging[J]. Journal of Biomedical Optics, 19, 086019(2014).

    [121] Ponticorvo A, Rowland R, Baldado M et al. Spatial frequency domain imaging (SFDI) of clinical burns: a case report[J]. Burns Open, 4, 67-71(2020).

    [122] Gioux S, Mazhar A, Lee B T et al. First-in-human pilot study of a spatial frequency domain oxygenation imaging system[J]. Journal of Biomedical Optics, 16, 086015(2011).

    [123] Lin W H, Zeng B X, Cao Z L et al. Quantitative diagnosis of tissue microstructure with wide-field high spatial frequency domain imaging[J]. Biomedical Optics Express, 9, 2905-2916(2018).

    [124] Nandy S, Mostafa A, Kumavor P D et al. Characterizing optical properties and spatial heterogeneity of human ovarian tissue using spatial frequency domain imaging[J]. Journal of Biomedical Optics, 21, 101402(2016).

    [125] Yang B, Sharma M, Tunnell J W. Attenuation-corrected fluorescence extraction for image-guided surgery in spatial frequency domain[J]. Journal of Biomedical Optics, 18, 080503(2013).

    [126] Nguyen J T, Lin S J, Tobias A M et al. A novel pilot study using spatial frequency domain imaging to assess oxygenation of perforator flaps during reconstructive breast surgery[J]. Annals of Plastic Surgery, 71, 308-315(2013).

    [127] Murphy G A, Singh-Moon R P, Mazhar A et al. Quantifying dermal microcirculatory changes of neuropathic and neuroischemic diabetic foot ulcers using spatial frequency domain imaging: a shade of things to come?[J]. BMJ Open Diabetes Research & Care, 8, e001815(2020).

    [128] Weinkauf C, Mazhar A, Vaishnav K et al. Near-instant noninvasive optical imaging of tissue perfusion for vascular assessment[J]. Journal of Vascular Surgery, 69, 555-562(2019).

    [129] Lin A J, Koike M A, Green K N et al. Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease[J]. Annals of Biomedical Engineering, 39, 1349-1357(2011).

    [130] Lin A J, Castello N A, Lee G et al. In vivo optical signatures of neuronal death in a mouse model of Alzheimer’s disease[J]. Lasers in Surgery and Medicine, 46, 27-33(2014).

    [131] Singh-Moon R P, Roblyer D M, Bigio I J et al. Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging[J]. Journal of Biomedical Optics, 19, 096003(2014).

    [132] Tabassum S, Zhao Y Y, Istfan R et al. Feasibility of spatial frequency domain imaging (SFDI) for optically characterizing a preclinical oncology model[J]. Biomedical Optics Express, 7, 4154-4170(2016).

    [133] Hu D, Fu X P, He X M et al. Noncontact and wide-field characterization of the absorption and scattering properties of apple fruit using spatial-frequency domain imaging[J]. Scientific Reports, 6, 37920(2016).

    Tools

    Get Citation

    Copy Citation Text

    Bowen Song, Yanyu Zhao. Diffuse Optical Imaging Technologies and Applications (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(8): 0800001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jun. 19, 2023

    Accepted: Sep. 1, 2023

    Published Online: Apr. 11, 2024

    The Author Email: Zhao Yanyu (yanyuzhao@buaa.edu.cn)

    DOI:10.3788/LOP231549

    Topics