Matter and Radiation at Extremes, Volume. 1, Issue 5, 249(2016)
Generation of a sharp density increase in radiation transport between high-Z and low-Z plasmas
[1] [1] D. Mihalas, B.W. Mihalas, Foundations of Radiation Hydrodynamics, Oxford University Press, 1984.
[2] [2] Y.B. Zel’dovich, Y.P. Raizer, Physics of Shock Waves and Hightemperature Hydrodynamic Phenomena, Academic Press, New York, 1967.
[3] [3] R.P. Drake, High Energy Density Physics, Springer-Verlag, New York, 2006.
[4] [4] J. Parrent, B. Friesen, M. Parthasarathy, A review of type Ia supernova spectra, Astrophys. Space Sci. 351 (2014) 1-52.
[5] [5] L. Ensman, A. Burrows, Shock breakout in SN 1987A, Astrophys. J. 393 (1992) 742.
[6] [6] C. Fransson, P. Lundquist, R.A. Chevalier, Circumstellar interaction in SN 1993J, Astrophys. J. 461 (1996) 993-1008.
[7] [7] J.M. Blondin, E.B. Wright, K.J. Borkowski, S.P. Reynolds, Transition to the radiative phase in supernova remnants, Astrophys. J. 500 (1998) 342-354.
[8] [8] J.M. Laming, J. Grun, Dynamical overstability of radiative blast waves: the atomic physics of shock stability, Phys. Rev. Lett. 89 (2002) 125002.
[9] [9] Jacco Vink, Supernova remnants: The X-ray perspective, Astron Astrophys. Rev. 20 (2012) 49.
[10] [10] P.J. Armitage, M. Livio, Hydrodynamics of the stream-disk impact in inter-acting binaries, Astrophys. J. 493 (1998) 898-908.
[11] [11] T.J. Maccarone, Observational tests of the picture of disk accretion, Space Sci. Rev. 183 (2014) 101-120.
[12] [12] R.P. Drake, Theory of radiative shocks in optically thick media, Phys. Plasmas 14 (2007) 043301.
[13] [13] Ryan G. McClarren, R. Paul Drake, J.E. Morel, James Paul Holloway, Theory of radiative shocks in the mixed, optically thick-thin case, Phys. Plasmas 17 (2010) 093301.
[14] [14] J. Bozier, G. Thiell, J. Lebreton, S. Azra, M. Decroisette, et al., Experimental- observation of a radiative wave generated in xenon by a laserdriven supercritical shock, Phys. Rev. Lett. 57 (1986) 1304-1307.
[15] [15] Matthias Gonzalez, Chantal Stehle, Edouard Audit, Michel Busquet, Bedrich Rus, et al., Astrophysical radiative shocks: from modeling to laboratory experiments, Laser Part. Beams 24 (4) (2006) 535-540.
[16] [16] P. Keiter, R. Drake, T. Perry, H. Robey, B. Remington, et al., Observation of a hydrodynamically-driven, radiative-precursor shock, Phys. Rev. Lett. 89 (2002) 165003.
[17] [17] X. Fleury, S. Bouquet, C. Stehle, M. Koenig, D. Batani, et al., A laser experiment for studying radiative shocks in astrophysics, Laser Part. Beams 20 (2002) 263-268.
[18] [18] S. Bouquet, C. Stehle, M. Koenig, J.-P. Chi eze, A. Benuzzi-Mounaix, et al., Observation of laser driven supercritical radiative shock precursors, Phys. Rev. Lett. 92 (2004) 225001.
[19] [19] M. Koenig, T. Vinci, A. Benuzzi-Mounaix, N. Ozaki, A. Ravasio, et al., Radiative shocks: An opportunity to study laboratory astrophysics, Phys. Plasmas 13 (2006) 056504.
[20] [20] A.B. Reighard, R.P. Drake, K.K. Dannenberg, D.J. Kremer, M. Grosskopf, et al., Observation of collapsing radiative shocks in laboratory experiments, Phys. Plasmas 13 (2006) 082901.
[21] [21] J. Osterhoff, D.R. Symes, A.D. Edens, A.S. Moore, E. Hellewell, et al., Radiative shell thinning in intense laser-driven blast waves, New J. Phys. 11 (2009) 023022.
[22] [22] A. Diziere, C. Michaut, M. Koenig, C.D. Gregory, A. Ravasio, et al., Highly radiative shock experiments driven by GEKKO XII, Astrophys. Space Sci. 336 (2011) 213-218.
[23] [23] A.J. Visco, R.P. Drake, S.H. Glenzer, T. D€oppner, G. Gregori, et al., Measurement of radiative shock properties by X-ray Thomson scattering, Phys. Rev. Lett. 108 (2012) 145001.
[24] [24] G.W. Meng, J.H. Li, J.M. Yang, T. Zhu, S.Y. Zou, et al., A simple method to verify the opacity and equation of state of high-Z plasmas, Phys. Plasmas 20 (2013), 092704.
[25] [25] G. Huser, C. Courtois, M.C. Monteil, Wall and laser spot motion in cylindrical hohlraums, Phys. Plasmas 16 (2009) 032703.
[26] [26] Private communication with Shiyang Zou.
[27] [27] P. Gu, W. Pei, T. Feng, C. Wu, Non-equilibrium radiation emission of the laser illuminated planar target, Sci. China Ser. G 48 (2005) 345.
[28] [28] F.J.D. Serduke, E. Minguez, S.J. Davidson, C.A. Iglesias, WorkOp-IV summary: lessons from iron opacities, JQSRT 65 (2000) 527.
[29] [29] R.E. Peierls, Theory on von Neumann's method of treating shocks, Technical Report LA-332, Los Alamos Scientific Laboratory, 1945.
[30] [30] William J. Rider, Revisiting wall heating, J. Comput. Phys. 162 (2000) 395-410.
[31] [31] J.H. Hammer, M.D. Rosen, A consistent approach to solving the radiation diffusion equation, Phys. Plasmas 10 (5) (2003) 1829.
[32] [32] R. Betti, M. Umansky, V. Lobatchev, V.N. Goncharov, R.L. McCrory, Hot-spot dynamics and deceleration-phase Rayleigh-Taylor instability of imploding inertial confinement fusion capsules, Phys. Plasmas 8 (2001) 5257.
[33] [33] R. Betti, K. Anderson, V.N. Goncharov, R.L. McCrory, D.D. Meyerhofer, et al., Deceleration phase of inertial confinement fusion implosions, Phys. Plasmas 9 (2002) 2277.
Get Citation
Copy Citation Text
Guangwei Meng, Jianguo Wang, Xuerong Wang, Jinghong Li, Weiyan Zhang. Generation of a sharp density increase in radiation transport between high-Z and low-Z plasmas[J]. Matter and Radiation at Extremes, 2016, 1(5): 249
Category: Research Article
Received: Apr. 1, 2016
Accepted: Aug. 10, 2016
Published Online: May. 9, 2017
The Author Email: Wang Jianguo (wang_jianguo@iapcm.ac.cn)