Infrared and Laser Engineering, Volume. 54, Issue 2, 20240455(2025)

Determination of copper content in raw ores via laser-induced breakdown spectroscopy with generalized linear model

Jing HE1...2, Quancheng LIU3, Zhonggang XIONG4, and Linyu CHEN12,* |Show fewer author(s)
Author Affiliations
  • 1School of Information Engineering, Mianyang Teachers' College, Mianyang 621000, China
  • 2Key Laboratory of IOT Security at Mianyang Teachers' College of Sichuan Province, Mianyang 621000, China
  • 3School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China
  • 4School of Mechanical Engineering, Guilin University of Aerospace Technology, Guilin 541004, China
  • show less
    Figures & Tables(11)
    Schematic of LIBS experimental setup
    Tablet images of nine kinds of ore/concentrate samples
    Typical spectra of nine kinds of copper ore/concentrate
    Variation of R2 in the training and test sets with α
    The number of selected Cu lines with α
    Predicted and validated results of Elastic Net
    • Table 1. The spectra sets and speciality of copper ore/concentrate

      View table
      View in Article

      Table 1. The spectra sets and speciality of copper ore/concentrate

      TypeSpectrumNo.SamplenameCopper content/wt.%
      Training/validationset1-10GWB(E)073.84
      21-30ZBK3398.46
      31-40ZBK33710.71
      41-50ZBK33612.79
      51-60ZBK34016.60
      71-80ZBK33820.56
      81-90ZBK338 B24.35
      Test set11-20ZBK3356.78
      61-70ZBK340 A18.04
    • Table 2. Performance comparison between eight models

      View table
      View in Article

      Table 2. Performance comparison between eight models

      ModelNumber of variablesTraining setTest set
      R2MSEvMSEpMAPE
      注:1 Information content >95%;2 Linear Kernel,c=44.54,g=0.01;3α=0.296,λ=0.003144λ=0.00656,Linear Kernel,c=91.85,g=0.01;5α=0.08;λ=0.00729,Linear Kernel,c=33.07,g=0.01
      PLSR160.96901.3041.8438.11%
      OLS290.98350.7012.31711.58%
      PSO-SVR2290.97890.8772.49612.55%
      Lasso (λ = 0.00656)210.98010.8311.70610.73%
      Ridge(k = 0.188)290.97920.8601.1808.37%
      Elastic Net3290.97950.8491.2318.56%
      Lasso-PSO-SVR4210.97870.9222.06111.43%
      Elastic Net-PSO-SVR5280.97920.8672.29511.89%
    • Table 3. Fitting MSE of Leave-one-out method

      View table
      View in Article

      Table 3. Fitting MSE of Leave-one-out method

      No.Validated oreLassoRidgeElastic NetPLSRLasso-PSO-SVRElastic Net-PSO-SVR
      1GWB(E)070.28450.23310.27510.47260.85890.5887
      2ZBK3390.89110.79980.84721.16412.58063.4203
      3ZBK3370.25780.23150.24360.37560.69670.4848
      4ZBK3360.70530.64970.69870.94652.44793.7488
      5ZBK3400.69740.59430.6581.13582.42042.3746
      6ZBK3380.78170.71330.74761.18952.68551.9875
      7ZBK338B0.80680.73890.77681.24952.44733.0500
      8ZBK3350.87220.77480.82621.27112.85622.8444
      9ZBK340A0.84640.72150.79031.15193.37783.5985
      Mean0.6830.6060.65150.99522.2642.455
      Std. deviation0.2430.2210.230.33740.8941.225
      Tests of normalityStatistic0.7710.7640.7610.7560.8210.877
      Sig. P0.0090.0080.0070.0060.0360.147
    • Table 4. Validation MSE of Leave-one-out method

      View table
      View in Article

      Table 4. Validation MSE of Leave-one-out method

      No.Validated oreLassoRidgeElastic NetPLSRLasso-PSO-SVRElastic Net-PSO-SVR
      1GWB(E)0767.314557.290456.326260.728968.194063.2958
      2ZBK3391.32772.41261.29471.44911.63201.0263
      3ZBK33752.240351.319252.869264.482747.913353.7357
      4ZBK33613.07868.294511.41428.98230.794036.1303
      5ZBK34028.876725.826923.75131.746226.347731.9675
      6ZBK3387.67853.54965.105112.450813.871213.3334
      7ZBK338B7.495214.749010.677615.386821.066021.2086
      8ZBK3353.54871.57431.37090.36611.44112.5917
      9ZBK340A2.05562.10121.69244.151938.968748.6560
      Mean20.40218.56918.277924.416127.80330.216
      Std. deviation24.11621.7721.800124.340721.76922.38
      Tests of normalityStatistic0.7910.7820.7690.8640.9560.949
      Sig. P0.0160.0130.0090.1070.7560.678
    • Table 5. Paired T-Test

      View table
      View in Article

      Table 5. Paired T-Test

      Paired groupSig. P
      FittingValidation
      Lasso vs PLSR0.0080.139
      Ridge vs PLSR0.0080.038
      Elastic Net vs PLSR0.0080.015
    Tools

    Get Citation

    Copy Citation Text

    Jing HE, Quancheng LIU, Zhonggang XIONG, Linyu CHEN. Determination of copper content in raw ores via laser-induced breakdown spectroscopy with generalized linear model[J]. Infrared and Laser Engineering, 2025, 54(2): 20240455

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 9, 2024

    Accepted: --

    Published Online: Mar. 14, 2025

    The Author Email: CHEN Linyu (chenlinyu@mtc.edu.cn)

    DOI:10.3788/IRLA20240455

    Topics