Journal of Innovative Optical Health Sciences, Volume. 14, Issue 6, 2130006(2021)

Near-infrared spectroscopy as a promising tool in stroke: Current applications and future perspectives

Jinyan Sun1,*... Richong Pang2, Sisi Chen1, Hucheng Chen2, Yuanrong Xie2, Dandan Chen3, Kai Wu4, Jianbin Liang2, Kecheng Yan2 and Zhifeng Hao5 |Show fewer author(s)
Author Affiliations
  • 1Department of Biomedical Engineering, School of Medicine Foshan University, Foshan 528000, P. R. China
  • 2Department of Electronic Information School of Mechatronic Engineering and Automation Foshan University, Foshan 528000, P. R. China
  • 3Seventh Affiliated Hospital, Sun Yat-Sen University Shenzhen 518107, P. R. China
  • 4Department of Biomedical Engineering School of Material Science and Engineering South China University of Technology Guangzhou 510006, P. R. China
  • 5School of Mathematics and Big Data Foshan University Foshan 528000, P. R. China
  • show less
    References(131)

    [1] [1] "Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016," Lancet Neurol. 18, 439–458 (2019).

    [2] [2] T. A. Schweizer, R. L. Macdonald, The Behavioral Consequences of Stroke, Springer, New York (2014).

    [3] [3] C. Cirillo, N. Brihmat, E. Castel-Lacanal, A. Le Friec, M. Barbieux-Guillot, N. Raposo, J. Pariente, A. Viguier, M. Simonetta-Moreau, J. F. Albucher, J. M. Olivot, F. Desmoulin, P. Marque, F. Chollet, I. Loubinoux, "Post-stroke remodeling processes in animal models and humans," J. Cereb. Blood Flow Metab. 40, 3–22 (2019).

    [4] [4] C. Grefkes, G. R. Fink, "Connectivity-based approaches in stroke and recovery of function," Lancet Neurol. 13, 206–216 (2014).

    [5] [5] M. Yang, Z. Yang, T. Yuan,W. Feng, P. Wang, "A systemic review of functional near-infrared spectroscopy for stroke: Current application and future directions," Front. Neurol. 10, 58 (2019).

    [6] [6] A. G. Guggisberg, P. J. Koch, F. C. Hummel, C. M. Buetefisch, "Brain networks and their relevance for stroke rehabilitation," Clin. Neurophysiol. 130, 1098–1124 (2019).

    [7] [7] K. S. Hong, M. A. Yaqub, "Application of functional near-infrared spectroscopy in the healthcare industry: A review," J. Innov. Opt. Health Sci. 12, 1930012 (2019).

    [8] [8] W. L. Chen, J. Wagner, N. Heugel, J. Sugar, Y. W. Lee, L. Conant, M. Malloy, J. Heffernan, B. Quirk, A. Zinos, S. A. Beardsley, R. Prost, H. T. Whelan, "Functional near-infrared spectroscopy and its clinical application in the field of neuroscience: Advances and future directions," Front. Neurosci. 14, 724 (2020).

    [9] [9] F. F. J€obsis, "Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters," Science 198, 1264 (1977).

    [10] [10] D. T. Delpy, M. Cope, "Quantification in tissue near-infrared spectroscopy," Philos. Trans. R. Soc. B, Biol. Sci. 352, 649–659 (1997).

    [11] [11] M. Wolf, M. Ferrari, V. Quaresima, "Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications," J. Biomed. Opt. 12, 062104 (2007).

    [12] [12] M. Ferrari, V. Quaresima, "A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application," Neuroimage 63, 921–935 (2012).

    [13] [13] J. Sun, F. Liu, H. Wang, A. Yang, C. Gao, Z. Li, X. Li, "Connectivity properties in the prefrontal cortex during working memory: A near-infrared spectroscopy study," J. Biomed. Opt. 24, 051410 (2019).

    [14] [14] T. Li, Q. Luo, H. Gong, "Gender-specific hemodynamics in prefrontal cortex during a verbal working memory task by near-infrared spectroscopy," Behav. Brain Res. 209, 148–153 (2010).

    [15] [15] T. Li, Y. Li, Y. Lin, K. Li, "Significant and sustaining elevation of blood oxygen induced by Chinese cupping therapy as assessed by nearinfrared spectroscopy," Biomed. Opt. Express 8, 223–229 (2017).

    [16] [16] B. Pan, C. Huang, X. Fang, X. Huang, T. Li, "Noninvasive and sensitive optical assessment of brain death," J. Biophoton. 12, e201800240 (2019).

    [17] [17] G. Strangman, D. A. Boas, J. P. Sutton, "Noninvasive neuroimaging using near-infrared light," Biol. Psychiatry 52, 679–693 (2002).

    [18] [18] S. Lloyd-Fox, A. Blasi, C. E. Elwell, "Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy," Neurosci. Biobehav. Rev. 34, 269–284 (2010).

    [19] [19] A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, D. T. Delpy, "Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy," Pediatr. Res. 39, 889–894 (1996).

    [20] [20] H. Obrig, "NIRS in clinical neurology—a 'promising' tool?," Neuroimage 85, 535–546 (2014).

    [21] [21] D. Zhang, M. E. Raichle, "Disease and the brain's dark energy," Nat. Rev. Neurol. 6, 15–28 (2010).

    [22] [22] Z. Li, Y. Wang, Y. Li, J. Li, L. Zhang, "Wavelet analysis of cerebral oxygenation signal measured by near infrared spectroscopy in subjects with cerebral infarction," Microvasc. Res. 80, 142–147 (2010).

    [23] [23] Z. Li, M. Zhang, Q. Xin, G. Chen, F. Liu, J. Li, "Spectral analysis of near-infrared spectroscopy signals measured from prefrontal lobe in subjects at risk for stroke," Med. Phys. 39, 2179–2185 (2012).

    [24] [24] Q. Y. Han, M. Zhang, W. H. Li, Y. J. Gao, Q. Xin, Y. Wang, Z. Y. Li, "Wavelet coherence analysis of prefrontal tissue oxyhaemoglobin signals as measured using near-infrared spectroscopy in elderly subjects with cerebral infarction," Microvasc. Res. 95, 108–115 (2014).

    [25] [25] Q. Han, Z. Li, Y. Gao, W. Li, Q. Xin, Q. Tan, M. Zhang, Y. Zhang, "Phase synchronization analysis of prefrontal tissue oxyhemoglobin oscillations in elderly subjects with cerebral infarction," Med. Phys. 41, 102702 (2014).

    [26] [26] Q. Tan, M. Zhang, Y. Wang, Q. Xin, B. Wang, Z. Li, "Frequency-specific functional connectivity revealed by wavelet-based coherence analysis in elderly subjects with cerebral infarction using NIRS method," Med. Phys. 42, 5391–5403 (2015).

    [27] [27] H. Su, C. Huo, B. Wang, W. Li, G. Xu, Q. Liu, Z. Li, "Alterations in the coupling functions between cerebral oxyhaemoglobin and arterial blood pressure signals in post-stroke subjects," PLoS One 13, e0195936 (2018).

    [28] [28] Q. Liu, B. Wang, Y. Liu, Z. Lv, W. Li, Z. Li, Y. Fan, "Frequency-specific effective connectivity in subjects with cerebral infarction as revealed by NIRS method," Neuroscience 373, 169–181 (2018).

    [29] [29] C. Huo, X. Li, J. Jing, Y. Ma, W. Li, Y. Wang, W. Liu, Y. Fan, S. Yue, Z. Li, "Median nerve electrical stimulation-induced changes in effective connectivity in patients with stroke as assessed with functional near-infrared spectroscopy," Neurorehabil. Neural Repair 33, 1008–1017 (2019).

    [30] [30] H. Xie, G. Xu, C. Huo, W. Li, H. Zhao, Z. Lv, Z. Li, "Brain function changes induced by intermittent sequential pneumatic compression in patients with stroke as assessed by functional near-infrared spectroscopy," Phys. Ther. (2021).

    [31] [31] K. M. Arun, K. A. Smitha, P. N. Sylaja, C. Kesavadas, "identifying resting-state functional connectivity changes in the motor cortex using fNIRS during recovery from stroke," Brain Topogr. 33, 710–719 (2020).

    [32] [32] H. Saitou, H. Yanagi, S. Hara, S. Tsuchiya, S. Tomura, "Cerebral blood volume and oxygenation among poststroke hemiplegic patients: Effects of 13 rehabilitation tasks measured by near-infrared spectroscopy," Arch. Phys. Med. Rehabil. 81, 1348– 1356 (2000).

    [33] [33] Y. Murata, K. Sakatani, Y. Katayama, C. Fukaya, "Increase in focal concentration of deoxyhaemoglobin during neuronal activity in cerebral ischaemic patients," J. Neurol. Neurosurg. Psychiatry 73, 182–184 (2002).

    [34] [34] Y. Murata, K. Sakatani, T. Hoshino, N. Fujiwara, T. Kano, S. Nakamura, Y. Katayama, "Effects of cerebral ischemia on evoked cerebral blood oxygenation responses and BOLD contrast functional MRI in stroke patients," Stroke 37, 2514–2520 (2006).

    [35] [35] A. K. Rehme, S. B. Eickho?, C. Rottschy, G. R. Fink, C. Grefkes, "Activation likelihood estimation meta-analysis of motor-related neural activity after stroke," Neuroimage 59, 2771–2782 (2012).

    [36] [36] H. Kato et al., "Near-infrared spectroscopic topography as a tool to monitor motor reorganization after hemiparetic stroke: A comparison with functional MRI," Stroke 33, 2032–2036 (2002).

    [37] [37] S. B. Lim, J. J. Eng, "Increased sensorimotor cortex activation with decreased motor performance during functional upper extremity tasks poststroke," J. Neurol. Phys. Ther. 43, 141–150 (2019).

    [38] [38] K. Takeda, Y. Gomi, I. Imai, N. Shimoda, M. Hiwatari, H. Kato, "Shift of motor activation areas during recovery from hemiparesis after cerebral infarction: A longitudinal study with near-infrared spectroscopy," Neurosci. Res. 59, 136–144 (2007).

    [39] [39] T. Sakurada, A. Goto, M. Tetsuka, T. Nakajima, M. Morita, S. I. Yamamoto, M. Hirai, K. Kawai, "Prefrontal activity predicts individual differences in optimal attentional strategy for preventing motor performance decline: A functional near-infrared spectroscopy study," Neurophotonics 6, 025012 (2019).

    [40] [40] M. MasoudiMotlagh, J. J. Sugar, M. Azimipour, W. W. Linz, G. Michalak, N. J. Seo, M. Ranji, "Monitoring hemodynamic changes in stroke-affected muscles using near-infrared spectroscopy," J. Rehabil. Assist. Technol. Eng. 2, 2055668315614195 (2015).

    [41] [41] I. Miyai, M. Suzuki, M. Hatakenaka, K. Kubota, "Effect of body weight support on cortical activation during gait in patients with stroke," Exp. Brain Res. 169, 85–91 (2006).

    [42] [42] M. Mihara, I. Miyai, M. Hatakenaka, K. Kubota, S. Sakoda, "Sustained prefrontal activation during ataxic gait: A compensatory mechanism for ataxic stroke?," Neuroimage 37, 1338–1345 (2007).

    [43] [43] M. Mihara, I. Miyai, N. Hattori, M. Hatakenaka, H. Yagura, T. Kawano, K. Kubota, "Cortical control of postural balance in patients with hemiplegic stroke," NeuroReport 23, 314–319 (2012).

    [44] [44] M. Hatakenaka, I. Miyai, M. Mihara, H. Yagura, N. Hattori, "Impaired motor learning by a pursuit rotor test reduces functional outcomes during rehabilitation of poststroke ataxia," Neurorehabil. Neural Repair 26, 293–300 (2012).

    [45] [45] M. Delorme, G. Vergotte, S. Perrey, J. Froger, I. La?ont, "Time course of sensorimotor cortex reorganization during upper extremity task accompanying motor recovery early after stroke: An fNIRS study," Restor. Neurol. Neurosci. 37, 207–218 (2019).

    [46] [46] S. Kinoshita, H. Tamashiro, T. Okamoto, N. Urushidani, M. Abo, "Association between imbalance of cortical brain activity and successful motor recovery in sub-acute stroke patients with upper limb hemiparesis: A functional near-infrared spectroscopy study," NeuroReport 30, 822–827 (2019).

    [47] [47] Z. Bai, K. N. K. Fong, ""Remind-to-Move" Treatment enhanced activation of the primary motor cortex in patients with stroke," Brain Topogr. 33, 275–283 (2020).

    [48] [48] P. Y. Lin, J. J. Chen, S. I. Lin, "The cortical control of cycling exercise in stroke patients: an fNIRS study," Hum. Brain Mapp. 34, 2381–2390 (2013).

    [49] [49] K. Miyara, K. Kawamura, S. Matsumoto, A. Ohwatashi, Y. Itashiki, T. Uema, T. Noma, K. Ikeda, M. Shimodozono, "Acute changes in cortical activation during active ankle movement after whole-body vibration for spasticity in hemiplegic legs of stroke patients: A functional near-infrared spectroscopy study," Top Stroke Rehabil. 27, 67–74 (2020).

    [50] [50] E. Jigjid, N. Kawashima, H. Ogata, K. Nakazawa, M. Akai, F. Eto, N. Haga, "Effects of passive leg movement on the oxygenation level of lower limb muscle in chronic stroke patients," Neurorehabil. Neural Repair 22, 40–49 (2008).

    [51] [51] I. Miyai, H. Yagura, M. Hatakenaka, I. Oda, I. Konishi, K. Kubota, "Longitudinal optical imaging study for locomotor recovery after stroke," Stroke 34, 2866–2870 (2003).

    [52] [52] H. Fujimoto, M. Mihara, N. Hattori, M. Hatakenaka, T. Kawano, H. Yagura, I. Miyai, H. Mochizuki, "Cortical changes underlying balance recovery in patients with hemiplegic stroke," Neuroimage 85, 547–554 (2014).

    [53] [53] C. Huo, G. Xu, Z. Li, Z. Lv, Q. Liu, W. Li, H. Ma, D. Wang, Y. Fan, "Limb linkage rehabilitation training-related changes in cortical activation and effective connectivity after stroke: A functional nearinfrared spectroscopy study," Sci. Rep. 9, 6226 (2019).

    [54] [54] K. Lu, G. Xu, W. Li, C. Huo, Q. Liu, Z. Lv, Y. Wang, Z. Li, Y. Fan, "Frequency-specific functional connectivity related to the rehabilitation task of stroke patients," Med. Phys. 46, 1545–1560 (2019).

    [55] [55] K. Saita, T. Morishita, H. Arima, K. Hyakutake, T. Ogata, K. Yagi, E. Shiota, T. Inoue, "Biofeedback effect of hybrid assistive limb in stroke rehabilitation: A proof of concept study using functional near infrared spectroscopy," PLoS One 13, e0191361 (2018).

    [56] [56] G. Massimiliano, G. Paolo, V. Laura, L. Sara, V. Jorge, O. Claudio, N. Stefano, B. Luciano, "Hand passive mobilization performed with robotic assistance: Acute effects on upper limb perfusion and spasticity in stroke survivors," Biomed. Res. Int. 2017, 1–6 (2017).

    [57] [57] S. J. Bae, S. H. Jang, J. P. Seo, P. H. Chang, "A pilot study on the optimal speeds for passive wrist movements by a rehabilitation robot of stroke patients: A functional NIRS study," IEEE Proc. Int. Conf. Rehabilitation and Robotics, Vol. 2017 (2017), pp. 7–12.

    [58] [58] K. J. Song, H. C. Min, J. Lee, C. J. N. Lee, "The effect of robot-assisted gait training on cortical activation in stroke patients: A functional nearinfrared spectroscopy study," NeuroRehabilitation 49, 65–73 (2021).

    [59] [59] I. Miyai, H. Yagura, I. Oda, I. Konishi, K. Kubota, "Premotor cortex is involved in restoration of gait in stroke," Ann. Neurol. 52, 188–194 (2002).

    [60] [60] S.-H. Lee, H.-J. Lee, Y. Shim, W. H. Chang, B.-O. Choi, G.-H. Ryu, Y.-H. Kim, "Wearable hip-assist robot modulates cortical activation during gait in stroke patients: A functional near-infrared spectroscopy study," J. Neuroeng. Rehabil. 17, 145 (2020).

    [61] [61] P. Caliandro, F. Molteni, C. Simbolotti, E. Guanziroli, C. Iacovelli, G. Reale, S. Giovannini, L. Padua, "Exoskeleton-assisted gait in chronic stroke: An EMG and functional near-infrared spectroscopy study of muscle activation patterns and prefrontal cortex activity," Clin. Neurophysiol. 131, 1775–1781 (2020).

    [62] [62] Y. Hara, S. Obayashi, K. Tsujiuchi, Y. Muraoka, "The effects of electromyography-controlled functional electrical stimulation on upper extremity function and cortical perfusion in stroke patients," Clin. Neurophysiol. 124, 2008–2015 (2013).

    [63] [63] S. Ferrante, D. Contini, L. Spinelli, A. Pedrocchi, A. Torricelli, F. Molteni, G. Ferrigno, R. Cubeddu, "Monitoring muscle metabolic indexes by time-domain near-infrared spectroscopy during knee flex-extension induced by functional electrical stimulation," J. Biomed. Opt. 14, 044011 (2009).

    [64] [64] C. C. Lo, P. Y. Lin, Z. Y. Hoe, J. J. Chen, "Near infrared spectroscopy study of cortical excitability during electrical stimulation-assisted cycling for neurorehabilitation of stroke patients," IEEE Trans. Neural Syst. Rehabil. Eng. 26, 1292–1300 (2018).

    [65] [65] M. Mihara, N. Hattori, M. Hatakenaka, H. Yagura, T. Kawano, T. Hino, I. Miyai, "Near-infrared spectroscopy-mediated neurofeedback enhances efficacy of motor imagery-based training in poststroke victims a pilot study," Stroke 44, 1091–1098 (2013).

    [66] [66] M. Mihara, H. Fujimoto, N. Hattori, H. Otomune, Y. Kajiyama, K. Konaka, Y.Watanabe, Y. Hiramatsu, Y. Sunada, I. Miyai, H. Mochizuki, "Effect of neurofeedback facilitation on poststroke gait and balance recovery: a randomized controlled trial," Neurology 96, e2587-e2598 (2021).

    [67] [67] M. Brunetti, N. Morkisch, C. Fritzsch, J. Mehnert, J. Steinbrink, M. Niedeggen, C. Dohle, "Potential determinants of efficacy of mirror therapy in stroke patients–A pilot study," Restor. Neurol. Neurosci. 33, 421–434 (2015).

    [68] [68] M. Rea, M. Rana, N. Lugato, P. Terekhin, L. Gizzi, D. Brotz, A. Fallgatter, N. Birbaumer, R. Sitaram, A. Caria, "Lower limb movement preparation in chronic stroke: A pilot study toward an fNIRS-BCI for gait rehabilitation," Neurorehabil. Neural Repair 28, 564–575 (2014).

    [69] [69] A. K. Matarasso, J. D. Rieke, K. White, M. M. Yusufali, J. J. Daly, "Combined real-time fMRI and real time fNIRS brain computer interface (BCI): Training of volitional wrist extension after stroke, a case series pilot study," PLoS One 16, e0250431 (2021).

    [70] [70] C. Grefkes, G. R. Fink, "Noninvasive brain stimulation after stroke: It is time for large randomized controlled trials!," Curr. Opin. Neurol. 29, 714– 720 (2016).

    [71] [71] G. Di Pino, G. Pellegrino, G. Assenza, F. Capone, F. Ferreri, D. Formica, F. Ranieri, M. Tombini, U. Ziemann, J. C. Rothwell, V. Di Lazzaro, "Modulation of brain plasticity in stroke: A novel model for neurorehabilitation," Nat. Rev. Neurol. 10, 597–608 (2014).

    [72] [72] H. Tamashiro, S. Kinoshita, T. Okamoto, N. Urushidani, M. Abo, "Effect of baseline brain activity on response to low-frequency rTMS/ intensive occupational therapy in poststroke patients with upper limb hemiparesis: A near-infrared spectroscopy study," Int. J. Neurosci. 129, 337–343 (2019).

    [73] [73] Z. Rezaee, S. Ranjan, D. Solanki, M. Bhattacharya, M. V. P. Srivastava, U. Lahiri, A. Dutta, "Feasibility of combining functional near-infrared spectroscopy with electroencephalography to identify chronic stroke responders to cerebellar transcranial direct current stimulation-a computational modeling and portable neuroimaging methodological study," Cerebellum (2021).

    [74] [74] E. Al-Yahya, H. Johansen-Berg, U. Kischka, M. Zarei, J. Cockburn, H. Dawes, "Prefrontal cortex activation while walking under dual-task conditions in stroke: a multimodal imaging study," Neurorehabil. Neural Repair 30, 591–599 (2016).

    [75] [75] T. Mori, N. Takeuchi, S. I. Izumi, "Prefrontal cortex activation during a dual task in patients with stroke," Gait Posture 59, 193–198 (2018).

    [76] [76] K. A. Hawkins, E. J. Fox, J. J. Daly, D. K. Rose, E. A. Christou, T. E. McGuirk, D. M. Otzel, K. A. Butera, S. A. Chatterjee, D. J. Clark, "Prefrontal over-activation during walking in people with mobility deficits: Interpretation and functional implications," Hum. Mov. Sci. 59, 46–55 (2018).

    [77] [77] E. Hermand, B. Tapie, O. Dupuy, S. Fraser, M. Compagnat, J. Y. Salle, J. C. Daviet, A. Perrochon, "Prefrontal cortex activation during dual task with increasing cognitive load in subacute stroke patients: A pilot study," Front. Aging Neurosci. 11, 160 (2019).

    [78] [78] S. A. Chatterjee, E. J. Fox, J. J. Daly, D. K. Rose, S. S. Wu, E. A. Christou, K. A. Hawkins, D. M. Otzel, K. A. Butera, J. W. Skinner, D. J. Clark, "Interpreting prefrontal recruitment during walking after stroke: Influence of individual differences in mobility and cognitive function," Front. Hum. Neurosci. 13, 194 (2019).

    [79] [79] Y. C. Liu, Y. R. Yang, Y. A. Tsai, R. Y. Wang, C. F. Lu, "Brain activation and gait alteration during cognitive and motor dual task walking in stroke-a functional near-infrared spectroscopy study," IEEE Trans. Neural Syst. Rehabil. Eng. 26, 2416–2423 (2018).

    [80] [80] D. J. Clark, D. K. Rose, K. A. Butera, B. Hoisington, L. DeMark, S. A. Chatterjee, K. A. Hawkins, D. M. Otzel, J. W. Skinner, E. A. Christou, S. S. Wu, E. J. Fox, "Rehabilitation with accurate adaptability walking tasks or steady state walking: A randomized clinical trial in adults post-stroke," Clin. Rehabil. 35, 1196–1206 (2021).

    [81] [81] F. A. Mansouri, K. Tanaka, M. J. Buckley, "Conflict-induced behavioural adjustment: A clue to the executive functions of the prefrontal cortex," Nat. Rev. Neurosci. 10, 141–152 (2009).

    [82] [82] S. Obayashi, "Frontal dynamic activity as a predictor of cognitive dysfunction after pontine ischemia," NeuroRehabilitation 44, 251–261 (2019).

    [83] [83] M. Moriya, C.Aoki, K. Sakatani, "Effects of physical exercise on working memory and prefrontal cortex function in post-stroke patients," Adv. Exp. Med. Biol. 923, 203–208 (2016).

    [84] [84] J. Chen, H. Li, C. Zeng, J. Li, B. Zhao, "Evaluation of the recovery outcome of poststroke cognitive impairment after cluster needling of scalp acupuncture therapy based on functional near-infrared spectroscopy," Brain Behav. 10, e01731 (2020).

    [85] [85] S. Obayashi, "The supplementary motor area responsible for word retrieval decline after acute thalamic stroke revealed by coupled SPECT and near-infrared spectroscopy," Brain Sci. 10, 247 (2020).

    [86] [86] T. Hara, M. Abo, K. Kakita, Y. Mori, M. Yoshida, N. Sasaki, "The effect of selective transcranial magnetic stimulation with functional near-infrared spectrescopy and intensive speech therapy on individuals with post-stroke aphasia," Eur. Neurol. 77, 186–194 (2017).

    [87] [87] G. C. Medeiros, D. Roy, N. Kontos, S. R. Beach, "Post-stroke depression: A 2020 updated review," Gen. Hosp. Psychiatry 66, 70–80 (2020).

    [88] [88] M. Koyanagi,M. Yamada, T. Higashi,W.Mitsunaga, T. Moriuchi, M. Tsujihata, "The usefulness of functional near-infrared spectroscopy for the assessment of post-stroke depression," Front. Hum. Neurosci. 15, 680847 (2021).

    [89] [89] H. Li, N. Zhu, E. A. Klomparens, S. Xu, M. Wang, Q. Wang, J. Wang, L. Song, "Application of functional near-infrared spectroscopy to explore the neural mechanism of transcranial direct current stimulation for post-stroke depression," Neurol. Res. 41, 714–721 (2019).

    [90] [90] T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, J. A. Detre, "Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients," Opt. Express 17, 3884–3902 (2009).

    [91] [91] P. Bonoczk, G. Panczel, Z. Nagy, "Vinpocetine increases cerebral blood flow and oxygenation in stroke patients: A near infrared spectroscopy and transcranial Doppler study," Eur. J. Ultrasound 15, 85–91 (2002).

    [92] [92] F. Pizza, M. Biallas, U. Kallweit, M. Wolf, C. L. Bassetti, "Cerebral hemodynamic changes in stroke during sleep-disordered breathing," Stroke 43, 1951–1953 (2012).

    [93] [93] M. Moriya, K. Sakatani, "Relation between asymmetry of prefrontal activity and autonomic nervous system in post-stroke patients with a disorder of consciousness," Adv. Exp. Med. Biol. 1072, 53–58 (2018).

    [94] [94] M. Moriya, K. Sakatani, "Changes in prefrontal cortex asymmetry due to standing load in stroke patients measured by NIRS," Adv. Exp. Med. Biol. 1269, 223–227 (2021).

    [95] [95] J. Selb, M. A. Yücel, D. Phillip, H. W. Schytz, H. K. Iversen, M. Vangel, M. Ashina, D. A. Boas, "Effect of motion artifacts and their correction on near-infrared spectroscopy oscillation data: A study in healthy subjects and stroke patients," J. Biomed. Opt. 20, 56011 (2015).

    [96] [96] S. Leistner, T. Sander-Thoemmes, H. Wabnitz, M. Moeller, M. Wachs, G. Curio, R. Macdonald, L. Trahms, B.-M. Mackert, "Non-invasive simultaneous recording of neuronal and vascular signals in subacute ischemic stroke," Biomed. Tech. 56, 85–90 (2011).

    [97] [97] A. Dutta, A. Jacob, S. R. Chowdhury, A. Das, M. A. Nitsche, "EEG-NIRS based assessment of neurovascular coupling during anodal transcranial direct current stimulation — a stroke case series," J. Med. Syst. 39, 205 (2015).

    [98] [98] Y. Sato, Y. Komuro, L. Lin, Z. Tang, L. Hu, S. Kadowaki, Y. Ugawa, Y. Yamada, K. Sakatani, "Differences in tissue oxygenation, perfusion and optical properties in brain areas affected by stroke: A time-resolved NIRS study," Adv. Exp. Med. Biol. 1072, 63–67 (2018).

    [99] [99] M. D. Fox, M. E. Raichle, "Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging," Nat. Rev. Neurosci. 8, 700–711 (2007).

    [100] [100] L. A. Boyd, K. S. Hayward, N. S. Ward, C. M. Stinear, C. Rosso, R. J. Fisher, A. R. Carter, A. P. Le?, D. A. Copland, L. M. Carey, L. G. Cohen, D. M. Basso, J. M. Maguire, S. C. Cramer, "Biomarkers of stroke recovery: Consensus-based core recommendations from the stroke recovery and rehabilitation roundtable," Int. J. Stroke 12, 480–493 (2017).

    [101] [101] S. H. Kohl, D. M. A. Mehler, M. Lührs, R. T. Thibault, K. Konrad, B. Sorger, "The potential of functional near-infrared spectroscopy-based neurofeedback-a systematic review and recommendations for best practice," Front. Neurosci. 14, 594 (2020).

    [102] [102] K. S. Button, J. P. Ioannidis, C. Mokrysz, B. A. Nosek, J. Flint, E. S. Robinson, M. R. Munafò, "Power failure: Why small sample size undermines the reliability of neuroscience," Nat. Rev. Neurosci. 14, 365–376 (2013).

    [103] [103] M. Susanne, E. Edgar, B. Axel, F. Franz, "A short tutorial of GPower," Tutor Quant. Methods Psychol. 3, 51–59 (2007).

    [104] [104] V. Toronov, A. Webb, J. H. Choi, M. Wolf, A. Michalos, E. Gratton, D. Hueber, "Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging," Med. Phys. 28, 521–527 (2001).

    [105] [105] G. Strangman, J. P. Culver, J. H. Thompson, D. A. Boas, "A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation," Neuroimage 17, 719–731 (2002).

    [106] [106] I. Tachtsidis, F. Scholkmann, "False positives and false negatives in functional near-infrared spectroscopy: Issues, challenges, and the way forward," Neurophotonics 3, 031405 (2016).

    [107] [107] H. Santosa, X. Zhai, F. Fishburn, P. J. Sparto, T. J. Huppert, "Quantitative comparison of correction techniques for removing systemic physiological signal in functional near-infrared spectroscopy studies," Neurophotonics 7, 035009 (2020).

    [108] [108] A. von Lühmann, X. Li, K. R. Müller, D. A. Boas, M. A. Yücel, "Improved physiological noise regression in fNIRS: A multimodal extension of the general linear model using temporally embedded canonical correlation analysis," Neuroimage 208, 116472 (2020).

    [109] [109] M. A. Yücel, A. V. Lühmann, F. Scholkmann, J. Gervain, I. Dan, H. Ayaz, D. Boas, R. J. Cooper, J. Culver, C. E. Elwell, A. Eggebrecht, M. A. Franceschini, C. Grova, F. Homae, F. Lesage, H. Obrig, I. Tachtsidis, S. Tak, Y. Tong, A. Torricelli, H. Wabnitz, M. Wolf, "Best practices for fNIRS publications," Neurophotonics 8, 012101 (2021).

    [110] [110] R. Lindquist, J. F. Wyman, K. M. Talley, M. J. Findor?, C. R. Gross, "Design of control-group conditions in clinical trials of behavioral interventions," J. Nurs. Scholarsh. 39, 214–221 (2007).

    [111] [111] V. S. Conn, T. C. Sells, "Compared to What?," West J. Nurs. Res. 42, 772–773 (2020).

    [112] [112] J. Lee, A. Lee, H. Kim, M. Shin, S. M. Yun, Y. Jung, W. H. Chang, Y. H. Kim, "Different brain connectivity between responders and nonresponders to dual-mode noninvasive brain stimulation over bilateral primary motor cortices in stroke patients," Neural Plast. 2019, 3826495 (2019).

    [113] [113] H. L. Filmer, J. B. Mattingley, P. E. Dux, "Modulating brain activity and behaviour with tDCS: Rumours of its death have been greatly exaggerated," Cortex 123, 141–151 (2020).

    [114] [114] X. Chen, P. Xie, Y. Zhang, Y. Chen, S. Cheng, L. Zhang, "Abnormal functional corticomuscular coupling after stroke," Neuroimage Clin. 19, 147–159 (2018).

    [115] [115] P. Pinti, C. Aichelburg, S. Gilbert, A. Hamilton, J. Hirsch, P. Burgess, I. Tachtsidis, "A review on the use of wearable functional near-infrared spectroscopy in naturalistic environments," Jpn. Psychol. Res. 60, 347–373 (2018).

    [116] [116] A. von Lühmann, B. B. Zimmermann, A. Ortega- Martinez, N. Perkins, M. A. Yücel, D. A. Boas, Towards neuroscience in the everyday world: Progress in wearable fNIRS instrumentation and applications, in OSA Biophotonics Congress: Optics in Life Sciences 2020, Florida (2020).

    [117] [117] H. Ban, G. Barrett, A. Borisevich, A. Chaturvedi, J. Dahle, H. Dehghani, B. DoValle, J. Dubois, R. Field, V. Gopalakrishnan, A. Gundran, M. Henninger, W. Ho, H. Hughes, R. Jin, J. Kates- Harbeck, T. Landy, A. Lara, M. Leggiero, G. Lerner, Z. Aghajan, M. Moon, A. Ojeda, I. Olvera, M. Ozturk, S. Park, M. Patel, K. Perdue, W. Poon, Z. Sheldon, B. Siepser, S. Sorgenfrei, N. Sun, V. Szczepanski, M. Zhang, Z. Zhu, Kernel flow: A high channel count scalable TD-fNIRS system, in SPIE BiOS, SPIE (2021).

    [118] [118] F. Lange, I. Tachtsidis, "Clinical brain monitoring with time domain NIRS: A review and future perspectives," Appl. Sci. (Basel) 9, 1612 (2019).

    [119] [119] S. R. Soekadar, S. H. Kohl, M. Mihara, A. von Lühmann, "Optical brain imaging and its application to neurofeedback," NeuroImage Clin. 30, 102577 (2021).

    [120] [120] K. S. Hong, M. J. Khan, M. J. Hong, "Feature extraction and classification methods for hybrid fNIRS-EEG brain–computer interfaces," Front. Hum. Neurosci. 12, 246 (2018).

    [121] [121] S. Finger, P. J. Koehler, C. Jagella, "The Monakow concept of diaschisis: Origins and perspectives," Arch. Neurol. 61, 283–288 (2004).

    [122] [122] Q. Zhang, E. N. Brown, G. E. Strangman, "Adaptive filtering to reduce global interference in evoked brain activity detection: A human subject case study," J. Biomed. Opt. 12, 064009 (2007).

    [123] [123] L. Duan, Z. Zhao, Y. Lin, X. Wu, Y. Luo, P. Xu, "Wavelet-based method for removing global physiological noise in functional near-infrared spectroscopy," Biomed. Opt Express 9, 3805–3820 (2018).

    [124] [124] G. Bauernfeind, S. C. Wriessnegger, I. Daly, G. R. Mueller-Putz, "Separating heart and brain: On the reduction of physiological noise from multichannel functional near-infrared spectroscopy (fNIRS) signals," J. Neural Eng. 11, 056010 (2014).

    [125] [125] J. Sun, L. Rao, C. Gao, "Extracting heartrate from optical signal of functional near-infrared spectroscopy based on mathematical morphology," J. Innov. Opt. Health Sci. 11, 1850010 (2018).

    [126] [126] T. Li, C. Xue, P. B. Wang, Y. Li, L. H. Wu, "Photon penetration depth in human brain for light stimulation and treatment: A realistic Monte Carlo simulation study," J. Innov. Opt. Health Sci. 10, 10 (2017).

    [127] [127] A. Wong, L. Robinson, S. Soroush, A. Suresh, K. P. J. J. O. I. O. H. Sciences, "Assessment of cerebral oxygenation response to hemodialysis using near-infrared spectroscopy (NIRS): Challenges and solutions," J. Innov. Opt Health Sci. (2021).

    [128] [128] L. Li, X. Pan, W. Chen, M. Wei, H. Yang, "Multimanufacturer drug identification based on near infrared spectroscopy and deep transfer learning," J. Innov. Opt. Health Sci. 13, 2150016 (2020).

    [129] [129] Z. H. Barnea, D. Abookasis, "Determination of creatinine level in patient blood samples by Fourier NIR spectroscopy and multivariate analysis in comparison with biochemical assay," J. Innov. Opt. Health Sci. 12, 1950015 (2019).

    [130] [130] J. Sun, B. Sun, L. Zhang, Q. Luo, H. Gong, "Correlation between hemodynamic and electrophysiological signals dissociates neural correlates of conflict detection and resolution in a Stroop task: A simultaneous near-infrared spectroscopy and event-related potential study," J. Biomed. Opt. 18, 096014 (2013).

    [131] [131] C. Gao, J. Sun, X. Yang, H. Gong, "Gender differences in brain networks during verbal Sternberg tasks: A simultaneous near-infrared spectroscopy and electro-encephalography study," J. Biophoton. 11, e201700120 (2018).

    Tools

    Get Citation

    Copy Citation Text

    Jinyan Sun, Richong Pang, Sisi Chen, Hucheng Chen, Yuanrong Xie, Dandan Chen, Kai Wu, Jianbin Liang, Kecheng Yan, Zhifeng Hao. Near-infrared spectroscopy as a promising tool in stroke: Current applications and future perspectives[J]. Journal of Innovative Optical Health Sciences, 2021, 14(6): 2130006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: May. 10, 2021

    Accepted: Aug. 14, 2021

    Published Online: Dec. 6, 2021

    The Author Email: Sun Jinyan (jinyansun@fosu.edu.cn)

    DOI:10.1142/s1793545821300068

    Topics