Opto-Electronic Engineering, Volume. 51, Issue 10, 240174(2024)

GLCrowd: a weakly supervised global-local attention model for congested crowd counting

Hongmin Zhang*, Qianqian Tian, Dingding Yan, and Lingyu Bu
Author Affiliations
  • School of Electrical and Electronic Engineering,Chongqing University of Technology,Chongqing 400054,China
  • show less
    References(48)

    [1] Tian Y Y, Deng M L, Gao H et al. Review of crowd counting algorithms based on deep learning[J]. Electron Meas Technol, 45, 152-159(2022).

    [2] Xiong H P, Lu H, Liu C X et al. From open set to closed set: supervised spatial divide-and-conquer for object counting[J]. Int J Comput Vis, 131, 1722-1740(2023).

    [4] Yu Y, Cai Z, Miao D Q et al. An interactive network based on transformer for multimodal crowd counting[J]. Appl Intell, 53, 22602-22614(2023).

    [5] Wang M J, Zhou J, Cai H et al. CrowdMLP: weakly-supervised crowd counting via multi-granularity MLP[J]. Pattern Recognit, 144, 109830(2023).

    [6] Lu Z K, Liu S, Zhong L et al. Survey on reaserch of crowd counting[J]. Comput Eng Appl, 58, 33-46(2022).

    [7] Guo A X, Xia Y F, Wang D W et al. A multi-scale crowd counting algorithm with removing background interference[J]. Comput Eng, 48, 251-257(2022).

    [8] Zhang Q M, Xu Y F, Zhang J et al. ViTAEv2: vision transformer advanced by exploring inductive bias for image recognition and beyond[J]. Int J Comput Vis, 131, 1141-1162(2023).

    [9] Vaswani A, Shazeer N, Parmar N et al. Attention is all you need[C], 6000-6010(2017).

    [10] Dosovitskiy A, Beyer L, Kolesnikov A et al. An image is worth 16x16 words: transformers for image recognition at scale[C](2021).

    [14] Li B, Zhang Y, Xu H H et al. CCST: crowd counting with swin transformer[J]. Vis Comput, 39, 2671-2682(2023).

    [21] Gao H, Zhao W J, Zhang D X et al. Application of improved transformer based on weakly supervised in crowd localization and crowd counting[J]. Sci Rep, 13, 1144(2023).

    [22] Liu Y T, Wang Z, Shi M J et al. Discovering regression-detection bi-knowledge transfer for unsupervised cross-domain crowd counting[J]. Neurocomputing, 494, 418-431(2022).

    [23] Xu C F, Liang D K, Xu Y C et al. AutoScale: learning to scale for crowd counting[J]. Int J Comput Vis, 130, 405-434(2022).

    [25] Zhang C Y, Zhang Y, Li B et al. CrowdGraph: weakly supervised crowd counting via pure graph neural network[J]. ACM Trans Multimedia Comput,Commun Appl, 20, 135(2024).

    [27] Liu Y T, Ren S C, Chai L Y et al. Reducing spatial labeling redundancy for active semi-supervised crowd counting[J]. IEEE Trans Pattern Anal Mach Intell, 45, 9248-9255(2022).

    [28] Deng M F, Zhao H L, Gao M. CLFormer: a unified transformer-based framework for weakly supervised crowd counting and localization[J]. Vis Comput, 40, 1053-1067(2024).

    [29] Liang D K, Chen X W, Xu W et al. TransCrowd: weakly-supervised crowd counting with transformers[J]. Sci China Inf Sci, 65, 160104(2022).

    [33] Gao J Y, Gong M G, Li X L. Congested crowd instance localization with dilated convolutional swin transformer[J]. Neurocomputing, 513, 94-103(2022).

    [34] Wang F S, Sang J, Wu Z Y et al. Hybrid attention network based on progressive embedding scale-context for crowd counting[J]. Inf Sci, 591, 306-318(2022).

    [39] Patwal A, Diwakar M, Tripathi V et al. Crowd counting analysis using deep learning: a critical review[J]. Proc Comput Sci, 218, 2448-2458(2023).

    [40] Chen Y Q, Zhao H L, Gao M et al. A weakly supervised hybrid lightweight network for efficient crowd counting[J]. Electronics, 13, 723(2024).

    [41] Lei Y J, Liu Y, Zhang P P et al. Towards using count-level weak supervision for crowd counting[J]. Pattern Recognit, 109, 107616(2021).

    [43] Liang L J, Zhao H L, Zhou F B et al. PDDNet: lightweight congested crowd counting via pyramid depth-wise dilated convolution[J]. Appl Intell, 53, 10472-10484(2023).

    [47] Savner S S, Kanhangad V. CrowdFormer: weakly-supervised crowd counting with improved generalizability[J]. J Vis Commun Image Representation, 94, 103853(2023).

    [48] Li Y C, Jia R S, Hu Y X et al. A weakly-supervised crowd density estimation method based on two-stage linear feature calibration[J]. IEEE/CAA J Autom Sin, 11, 965-981(2024).

    Tools

    Get Citation

    Copy Citation Text

    Hongmin Zhang, Qianqian Tian, Dingding Yan, Lingyu Bu. GLCrowd: a weakly supervised global-local attention model for congested crowd counting[J]. Opto-Electronic Engineering, 2024, 51(10): 240174

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Jul. 24, 2024

    Accepted: Oct. 8, 2024

    Published Online: Jan. 2, 2025

    The Author Email: Hongmin Zhang (张红民)

    DOI:10.12086/oee.2024.240174

    Topics