Chinese Journal of Lasers, Volume. 49, Issue 23, 2306004(2022)

Design and Fabrication of Novel Large Effective Area Non-Zero Dispersion-Shifted Optical Fiber Based on Outside Vapor Deposition

Jianjiang Zha1、*, Qiang Chen1, Xingling Lan2, Jun Zhang2, and Jianxiang Wen3
Author Affiliations
  • 1Shandong Futong Optelecom Science & Technology Co., Ltd., Jinan 250119, Shandong, China
  • 2Chengdu Futong Optical Communication Technologies Co., Ltd., Chengdu 611731, Sichuan, China
  • 3Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China
  • show less
    References(31)

    [1] Qin H Q, Xiao X S. Influence of the nonlinear propagation effect on the optical signal-to-noise ratio of 400G optical fiber communication systems[J]. Chinese Optics Letters, 15, 030604(2017).

    [2] Chen Z F, Zuo F X, Hu L et al. Time synchronization system based on bidirectional time-division multiplexing transmission over single fiber with same wavelength[J]. Chinese Journal of Lasers, 48, 0906005(2021).

    [3] Hu J K, Guo X J, Li J P et al. Deep learning-based recognition of modes and mode groups in multimode optical fiber communication system[J]. Acta Optica Sinica, 42, 0406004(2022).

    [4] Tu J J, Li Z H. Review of space division multiplexing fibers[J]. Acta Optica Sinica, 41, 0106003(2021).

    [5] Mears R J, Reekie L, Jauncey I M et al. High-gain rare-earth-doped fiber amplifier at 1.54 μm[C], WI2(1987).

    [6] Desurvire E. Erbium-doped fiber amplifiers for new generations of optical communication systems[J]. Optics and Photonics News, 2, 6(1991).

    [7] Giles C R, Desurvire E, Talman J R et al. 2-Gbit/s signal amplification at lambda =1.53 mu m in an erbium-doped single-mode fiber amplifier[J]. Journal of Lightwave Technology, 7, 651-656(1989).

    [9] Chraplyvy A R, Gnauck A H, Tkach R W et al. 160-Gb/s (8×20 Gb/s WDM) 300-km transmission with 50-km amplifier spacing and span-by-span dispersion reversal[C], PD19(1994).

    [10] Brackett C A. Dense wavelength division multiplexing networks: principles and applications[J]. IEEE Journal on Selected Areas in Communications, 8, 948-964(1990).

    [11] Forghieri F, Tkach R W, Chraplyvy A R. Fiber nonlinearities and their impact on transmission systems[M]. Kaminow I P, Koch T L. Optical fiber telecommunications IIIA, 196-264(1997).

    [12] ITU-T Publications[S].

    [13] Chraplyvy A R, Tkach R W. Optical fiber for wavelength division multiplexing[P].

    [14] Liu Y M, Antos A J, Newhouse M A. Large effective area dispersion-shifted fibers with dual-ring index profiles[C], 165-166(1996).

    [15] Zhang C L. A new type of optical fiber—G.655 optical fiber[J]. Telecommunications Technology, 12-14(1999).

    [16] ITU-T Publications[S].

    [17] Ma Z Y, Wu Q Q, Li Q H et al. Ultra-dense wavelength division multiplexing passive optical network[J]. Laser & Optoelectronics Progress, 58, 0500006(2021).

    [18] Li J Y, Li S Y, Li H Q et al. Design of new S-C-L band single mode fiber[J]. Study on Communications, 45-47(2004).

    [19] ITU-T Publications[S].

    [20] Mynbaev D K, Scheiner L[M]. Fiber-optic communications technology. Xu G Q, Duan K, Liao G Y, et al., Transl(2002).

    [21] Mao X R, Kou Z F, Zhang J H. Two improved methods of suppression four wave mixing effect in optical fiber transmission[J]. Laser & Optoelectronics Progress, 54, 080601(2017).

    [22] Gong Y D, Jian S S. Research on large effective area fiber[J]. Optical Communication Technology, 23, 126-130(1999).

    [23] Shen J H, Shao Z H. Effect of four-wave mixing on DWDM systems[J]. Optical Fiber & Electric Cable and Their Applications, 6-9(2001).

    [24] Nouchi P. Maximum effective area for non-zero dispersion-shifted fiber[C], 303-304(1998).

    [25] Vandewoestine R V, Morrow A J. Developments in optical waveguide fabrication by the outside vapor deposition process[J]. Journal of Lightwave Technology, 4, 1020-1025(1986).

    [26] Jin W, Bao H H, Qi Y et al. Micro/nano-structured optical fiber laser spectroscopy[J]. Acta Optica Sinica, 41, 0130002(2021).

    [27] Wang T J, Zhang M. Study on PMD of large effective area G655 fiber[C], 376-379(2000).

    [28] Ye H Q, Huang K, Xiao D et al. Experimental investigation of fiber scrambling[J]. Acta Optica Sinica, 40, 0606001(2020).

    [29] Wang D, Ying K, Li W P et al. Design and inscription of optical filters based on multi-phase-shifted fiber Bragg gratings[J]. Acta Optica Sinica, 40, 2206002(2020).

    [30] Croft T D, Ritter J E, Bhagavatula V A. Low-loss dispersion-shifted single-mode fiber manufactured by the OVD process[J]. Journal of Lightwave Technology, 3, 931-934(1985).

    [31] Blankenship M G, Deneka C W. The outside vapor deposition method of fabricating optical waveguide fibers[J]. IEEE Journal of Quantum Electronics, 18, 1418-1423(1982).

    [32] Zhang S Q, Han Q R, Cao Y Q et al. The performance and comparison of YOFC G.655 serial products[J]. Optical Fiber & Electric Cable and Their Applications, 8-11(2003).

    Tools

    Get Citation

    Copy Citation Text

    Jianjiang Zha, Qiang Chen, Xingling Lan, Jun Zhang, Jianxiang Wen. Design and Fabrication of Novel Large Effective Area Non-Zero Dispersion-Shifted Optical Fiber Based on Outside Vapor Deposition[J]. Chinese Journal of Lasers, 2022, 49(23): 2306004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber optics and optical communication

    Received: May. 24, 2022

    Accepted: Jul. 8, 2022

    Published Online: Nov. 2, 2022

    The Author Email: Zha Jianjiang (jj_zha@163.com)

    DOI:10.3788/CJL202249.2306004

    Topics