Journal of Radiation Research and Radiation Processing, Volume. 40, Issue 5, 050101(2022)
Progress in the research on radiation-induced defects in nanomaterials
[1] Sickafus K E, Kotomin E A, Uberuaga B P[M]. Radiation Effects in Solids(2007).
[2] Duragkar A, Muley A, Pawar N R et al. Versatility of thermoluminescence materials and radiation dosimetry — a review[J]. Luminescence: the Journal of Biological and Chemical Luminescence, 34, 656-665(2019).
[3] Williams J S. Ion implantation of semiconductors[J]. Materials Science and Engineering: A, 253, 8-15(1998).
[4] Yanagida Y, Oishi T, Miyaji T et al. Nanoporous structure formation in GaSb, InSb, and Ge by ion beam irradiation under controlled point defect creation conditions[J]. Nanomaterials (Basel, Switzerland), 7, 180(2017).
[5] Meng D C, Lan M, Yang Z H et al. Gamma-ray irradiation-induced oxidation and disproportionation at the amorphous SiO2/Si interfaces[J]. Journal of Materials Chemistry C, 8, 17065-17073(2020).
[6] Sharov F V, Moxim S J, Haase G S et al. A comparison of radiation-induced and high-field electrically stress-induced interface defects in Si/SiO2 MOSFETs via electrically detected magnetic resonance[J]. IEEE Transactions on Nuclear Science, 69, 208-215(2022).
[7] Song Y, Zhang Y, Liu Y et al. Mechanism of synergistic effects of neutron- and gamma-ray-radiated PNP bipolar transistors[J]. ACS Applied Electronic Materials, 1, 538-547(2019).
[8] Yin Y N, Liu J, Liu T Q et al. Heavy-ion induced radiation effects in 50 nm NAND floating gate flash memories[J]. Microelectronics Reliability, 102, 113450(2019).
[9] Rybicki G C. Deep level defects in alpha particle irradiated 6H silicon carbide[J]. Journal of Applied Physics, 78, 2996-3000(1995).
[10] Kozlovski V V, Lebedev A A, Bogdanova E V et al. Conductivity compensation in CVD-grown n-4H-SiC under irradiation with 0.9 MeV electrons[J]. Materials Science Forum, 821/822/823, 293-296(2015).
[11] Kalinina E V, Kholuyanov G, Strel'chuk A M et al. Electrical study of fast neutron irradiated devices based on 4H-SiC CVD epitaxial layers[J]. Materials Science Forum, 457/458/459/460, 705-710(2004).
[12] Ivanov A M, Strokan N B, Scherbov N A et al. Uniformity of properties of 4H-SiC CVD films under exposure to radiation[J]. Materials Science Forum, 679/680, 177-180(2011).
[13] Liu M, Yang X M, Gao Y T et al. Investigation of the damage behavior in CVD SiC irradiated with 70 keV He ions by NEXAFS, Raman and TEM[J]. Journal of the European Ceramic Society, 37, 1253-1259(2017).
[14] Aradi E, Lewis-Fell J, Greaves G et al. In situ TEM investigations of the microstructural changes and radiation tolerance in SiC nanowhiskers irradiated with He ions at high temperatures[J]. Acta Materialia, 210, 116820(2021).
[15] Pilko V V, Komarov F F, Budzynski P. Structure and hardness evolution of silicon carbide epitaxial layers irradiated with He+ ions[J]. Acta Physica Polonica A, 136, 351-355(2019).
[16] Xu Z W, Chen L, Zhou B M et al. Nano-structure and property transformations of carbon systems under γ-ray irradiation: a review[J]. RSC Advances, 3, 10579(2013).
[17] Banhart F. Irradiation of carbon nanotubes with a focused electron beam in the electron microscope[J]. Journal of Materials Science, 41, 4505-4511(2006).
[18] Beuneu F, L’Huillier C, Salvetat J P et al. Modification of multiwall carbon nanotubes by electron irradiation: an ESR study[J]. Physical Review B, 59, 5945-5949(1999).
[19] Anikeyev V V, Kovalchuk B V, Lazorenko V M et al. Effect of electron irradiation on the formation and healing of defects in carbon nanotubes[J]. Inorganic Materials: Applied Research, 7, 204-209(2016).
[20] Krasheninnikov A V, Nordlund K, Keinonen J. Production of defects in supported carbon nanotubes under ion irradiation[J]. Physical Review B, 65, 165423(2002).
[21] Elsehly E M, Chechenin N G, Makunin A V et al. Enhancement of CNT-based filters efficiency by ion beam irradiation[J]. Radiation Physics and Chemistry, 146, 19-25(2018).
[22] Yasein M, Eissa M F, El-Fayoumi M A K et al. Studying the effect of low doses of gamma and beta irradiations on graphene oxide samples[J]. Radiation Physics and Chemistry, 173, 108941(2020).
[23] Han M X, Ji Z Y, Shang L W et al. γ radiation caused graphene defects and increased carrier density[J]. Chinese Physics B, 20, 086102(2011).
[24] Lu S K, Liao F, Wang T et al. Tuning surface properties of graphene oxide quantum dots by gamma-ray irradiation[J]. Journal of Luminescence, 175, 88-93(2016).
[25] Zhen X J, Huang Y F, Yang S S et al. The effect of 500 keV proton irradiation on reduced graphene oxide paper[J]. Materials Letters, 260, 126880(2020).
[26] Zhen X J, Huang Y F, Yang S S et al. The effect of proton irradiation on the properties of a graphene oxide paper[J]. RSC Advances, 9, 30519-30525(2019).
[27] Eissa M F, El Rouby W M A. Effect of alpha particle irradiations on the structural properties of graphene oxide[J]. International Journal of Modern Physics B, 32, 1850343(2018).
[28] ZHANG Na, LIU Bo, LIN Liwei. Effect of He ion irradiation on microstructure and electrical properties of graphene[J]. Acta Physica Sinica, 69, 016101(2020).
[29] Zeng J, Liu J, Zhang S X et al. Graphene electrical properties modulated by swift heavy ion irradiation[J]. Carbon, 154, 244-253(2019).
[30] Gawlik G, Ciepielewski P, Baranowski J M et al. Ion beam induced defects in CVD graphene on glass[J]. Surface and Coatings Technology, 306, 119-122(2016).
[31] Yao W J, Fan L. The effect of ion irradiation induced defects on mechanical properties of graphene/copper layered nanocomposites[J]. Metals, 9, 733(2019).
[32] Kamedulski P, Truszkowski S, Lukaszewicz J P. Highly effective methods of obtaining N-doped graphene by gamma irradiation[J]. Materials (Basel, Switzerland), 13, 4975(2020).
[33] He Z Y, Zhao R, Chen X F et al. Defect engineering in single-layer MoS2 using heavy ion irradiation[J]. ACS Applied Materials & Interfaces, 10, 42524-42533(2018).
[34] Wu X L, Zheng X J, Zhang G B et al. γ-ray irradiation-induced unprecedent optical, frictional and electrostatic performances on CVD-prepared monolayer WSe2[J]. RSC Advances, 11, 22088-22094(2021).
[35] Foran B, Mann C, Peterson M et al. Effects of proton radiation-induced defects on optoelectronic properties of MoS2[J]. IEEE Transactions on Nuclear Science, 66, 413-419(2019).
[36] Zan R, Ramasse Q M, Jalil R et al. Control of radiation damage in MoS2 by graphene encapsulation[J]. ACS Nano, 7, 10167-10174(2013).
[37] Bertolazzi S, Bonacchi S, Nan G J et al. Engineering chemically active defects in monolayer MoS2 transistors via ion-beam irradiation and their healing via vapor deposition of alkanethiols[J]. Advanced Materials, 29, 1606760(2017).
[38] Wang X N, Wu L, Wang Z W et al. C/N vacancy co-enhanced visible-light-driven hydrogen evolution of g-C3N4 nanosheets through controlled He+ ion irradiation[J]. Solar RRL, 3, 1970043(2019).
[39] Wang D, Gu X J, Liu G W et al. Employing one-step coupling cold plasma and thermal polymerization approach to construct nitrogen defect-rich carbon nitrides toward efficient visible-light-driven hydrogen generation[J]. International Journal of Hydrogen Energy, 46, 5158-5168(2021).
[40] Sun S Q, Wu Y C, Zhu J F et al. Stabilizing plasma-induced highly nitrogen-deficient g-C3N4 by heteroatom-refilling for excellent lithium-ion battery anodes[J]. Chemical Engineering Journal, 427, 131032(2022).
[41] Kotakoski J, Jin C H, Lehtinen O et al. Electron knock-on damage in hexagonal boron nitride monolayers[J]. Physical Review B, 82, 113404(2010).
[42] Cretu O, Lin Y C, Suenaga K. Inelastic electron irradiation damage in hexagonal boron nitride[J]. Micron, 72, 21-27(2015).
[43] Kim J S, Borisenko K B, Nicolosi V et al. Controlled radiation damage and edge structures in boron nitride membranes[J]. ACS Nano, 5, 3977-3986(2011).
[44] Simos N, Kotsina Z, Sprouster D et al. Hexagonal boron nitride (h-BN) irradiated with 140 MeV protons[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 479, 110-119(2020).
[45] Cataldo F, Iglesias-Groth S. Neutron damage of hexagonal boron nitride: h-BN[J]. Journal of Radioanalytical and Nuclear Chemistry, 313, 261-271(2017).
[46] Yao F F, Cai Y Q, Xiao Z R et al. In situ transmission electron microscopy study of the formation and migration of vacancy defects in atomically thin black phosphorus[J]. 2D Materials, 8, 025004(2021).
[47] Gupta S, Periasamy P, Narayanan B. Defect dynamics in two-dimensional black phosphorus under argon ion irradiation[J]. Nanoscale, 13, 8575-8590(2021).
[48] Zhong H Z, Gao G P, Wang X N et al. Ion irradiation inducing oxygen vacancy-rich NiO/NiFe2O4 heterostructure for enhanced electrocatalytic water splitting[J]. Small (Weinheim an Der Bergstrasse, Germany), 17, e2103501(2021).
[49] Yin C, Dannoux-Papin A, Haas J et al. Investigation of mechanisms of radiolytic H2 production in C-S-H: influence of water content and radiation induced defects[J]. Radiation Physics and Chemistry, 191, 109865(2022).
[50] Ingle N N, Shirsat S, Sayyad P et al. Influence of swift heavy ion irradiation on sensing properties of nickel-(NRs-Ni3HHTP2) metal-organic framework[J]. Journal of Materials Science: Materials in Electronics, 32, 18657-18668(2021).
[51] Al Lafi A G, Assfour B, Assaad T. Spectroscopic investigations of gamma-ray irradiation effects on metal organic framework[J]. Journal of Materials Science, 56, 12154-12170(2021).
[52] Fairley M, Gilson S E, Hanna S L et al. Linker contribution toward stability of metal-organic frameworks under ionizing radiation[J]. Chemistry of Materials, 33, 9285-9294(2021).
[53] Sommer L, Krivokapić A, Svelle S et al. Enhanced catalyst performance of zeolite SSZ-13 in the methanol to olefin reaction after neutron irradiation[J]. The Journal of Physical Chemistry C, 115, 6521-6530(2011).
[54] Chen J C, Zhang M X, Shu J et al. Electron beam irradiation-induced formation of defect-rich zeolites under ambient condition within minutes[J]. Angewandte Chemie (International Ed in English), 60, 14858-14863(2021).
Get Citation
Copy Citation Text
Pingping GAN, Xianmei CHEN, Zhiwen JIANG, Yunlong WANG, Jun MA. Progress in the research on radiation-induced defects in nanomaterials[J]. Journal of Radiation Research and Radiation Processing, 2022, 40(5): 050101
Category: Research Articles
Received: Mar. 19, 2022
Accepted: May. 24, 2022
Published Online: Nov. 3, 2022
The Author Email: Yunlong WANG (wylong@nuaa.edu.cn)