Infrared and Laser Engineering, Volume. 51, Issue 9, 20220497(2022)

Virtual-real combination interferometry for aspheric surface parameter error measurement with cat-eye-wavefront positioning (invited)

Yao Hu, Xin Tao, and Qun Hao
Author Affiliations
  • Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • show less

    Aspheric surfaces are widely used in optical systems. Aspheric surface parameters, including vertex radius of curvature, conic constant, and high-order aspheric coefficients participate in optical design, manufacture, measurement, alignment and assembly. Precision measurement for aspheric surface parameters is the basis for manufacture, alignment and assembly. A partial compensation measurement system is proposed based on virtual-real combination interferometer for aspheric surface parameter error measurement. In this measurement system, residual wavefronts are measured by partial compensation interferometry. The interferometer is multiplexed in cat-eye-wavefront positioning method to measure the compensation distance which is the distance between compensator and aspheric surface under test. Aspheric surface parameter errors are calculated by virtual-real combination iterative algorithm. The system only needs to introduce a converging lens into the optical path of partial compensation interferometry, which is easy to align and assemble, and has high measurement accuracy. The effectiveness and accuracy are verified through the measurement of a 4th-order aspheric surface.

    Tools

    Get Citation

    Copy Citation Text

    Yao Hu, Xin Tao, Qun Hao. Virtual-real combination interferometry for aspheric surface parameter error measurement with cat-eye-wavefront positioning (invited)[J]. Infrared and Laser Engineering, 2022, 51(9): 20220497

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue—Ultra precision manufacture and testing technology of optical aspheric surface

    Received: Jul. 20, 2022

    Accepted: --

    Published Online: Jan. 6, 2023

    The Author Email:

    DOI:10.3788/IRLA20220497

    Topics