Spectroscopy and Spectral Analysis, Volume. 42, Issue 6, 1792(2022)

Research on Non-Destructive Testing of Navel Orange Shelf Life Imaging Based on Hyperspectral Image and Spectrum Fusion

Yan-de LIU* and Shun WANG
Author Affiliations
  • School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China
  • show less
    Figures & Tables(12)
    Hyperspectral image of navel orange sample(a): Day 0 navel orange; (b): Day 7 navel orange; (c): Day 14 navel orange
    Comparison chart of representative spectra of navel oranges with different shelf life
    The prediction set classification results of RBF-kernel in LS-SVM
    The prediction set classification results of LIN-kernel in LS-SVM
    The prediction set classification results of LIN-kernel in LS-SVM
    • Table 1. PLS-DA model results based on spectral characteristics

      View table
      View in Article

      Table 1. PLS-DA model results based on spectral characteristics

      输入变
      量个数
      RMSEPRp误判率
      /%
      预测集误判个数
      第0天第7天第14天
      1760.290.948303
    • Table 2. LS-SVM model results based on spectral characteristics

      View table
      View in Article

      Table 2. LS-SVM model results based on spectral characteristics

      输入变
      量个数
      核函数参数总误判
      率/%
      预测集误判个数
      第0天第7天第14天
      176LIN-Kernelγ=1.49.3151
      176RBF-Kernelγ=59 078,
      σ2=6 359
      5.33211
    • Table 3. Results of PLS-DA model based on image features

      View table
      View in Article

      Table 3. Results of PLS-DA model based on image features

      输入变
      量个数
      RMSEPRp误判率
      /%
      预测集误判个数
      第0天第7天第14天
      110.2380.8821.3196
    • Table 4. LS-SVM model results based on image features

      View table
      View in Article

      Table 4. LS-SVM model results based on image features

      输入变
      量个数
      核函数参数总误判
      率/%
      预测集误判个数
      第0天第7天第14天
      11LIN-Kernelγ=3 79520096
      11RBF-Kernelγ=124,
      σ2=177
      22.20116
    • Table 5. Results of PLS-DA model based on mixed features

      View table
      View in Article

      Table 5. Results of PLS-DA model based on mixed features

      输入变
      量个数
      RMSEPRp误判率
      /%
      预测集误判个数
      第0天第7天第14天
      1870.20.971.3010
    • Table 6. LS-SVM model results based on mixed features

      View table
      View in Article

      Table 6. LS-SVM model results based on mixed features

      输入变
      量个数
      核函数参数总误判
      率/%
      预测集误判个数
      第0天第7天第14天
      187LIN-Kernelγ=8.51.33010
      187RBF-Kernelγ=24 810,
      σ2=7 595
      2.67020
    • Table 7. Result statistics of two qualitative discriminant models with different characteristics

      View table
      View in Article

      Table 7. Result statistics of two qualitative discriminant models with different characteristics

      模型不同类
      型特征
      变量
      个数
      核函数参数预测集误
      判率/%
      LS-SVM光谱176RBF-Kernelγ=59 078,
      σ2=6 359
      5.3
      LS-SVM图像11LIN-Kernelγ=3 79520
      LS-SVM融合187LIN-Kernelγ=8.51.33
    Tools

    Get Citation

    Copy Citation Text

    Yan-de LIU, Shun WANG. Research on Non-Destructive Testing of Navel Orange Shelf Life Imaging Based on Hyperspectral Image and Spectrum Fusion[J]. Spectroscopy and Spectral Analysis, 2022, 42(6): 1792

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Apr. 24, 2021

    Accepted: --

    Published Online: Nov. 14, 2022

    The Author Email: LIU Yan-de (jxliuyd@163.com)

    DOI:10.3964/j.issn.1000-0593(2022)06-1792-06

    Topics