Journal of the Chinese Ceramic Society, Volume. 52, Issue 1, 292(2024)

Halide Perovskite Sensitive Materials and Their Gas Sensing Applications

HAN Fei1... WANG Lingling2,*, CHEN Wei2, HU Yin2, ZHANG Fen2, and SHAO Wei23 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(63)

    [1] [1] WANG C, WANG D, KOZHEVNIKOV V, et al. A flexible topo-optical sensing technology with ultra-high contrast[J]. Nat Commun, 2020, 11(1): 1448.

    [2] [2] WU Yonglin, CHEN Chen, HAN Fang, et al. J Biomed Eng, 2022, 39(4): 798-805.

    [3] [3] CHEN X H, LEISHMAN M, BAGNALL D, et al. Nanostructured gas sensors: From air quality and environmental monitoring to healthcare and medical applications[J]. Nanomaterials, 2021, 11(8): 1927.

    [4] [4] SUN Xia. Research on gas/humidity sensors based on all-inorganic halide perovskites[D]. Chongqing: Chongqing University, 2021.

    [5] [5] ZHANG Qing, LI Shuo, LIU Guimin, et al. J Chin Ceram Soc, 2022, 50(7): 1800-1809.

    [6] [6] CHEN T W, RAMACHANDRAN R, CHEN S M, et al. Graphene and perovskite-based nanocomposite for both electrochemical and gas sensor applications: An overview[J]. Sensors, 2020, 20: 6755.

    [7] [7] HU Yang, ZHANG Shengli, ZHOU Wenhan, et al. J Chin Ceram Soc, 2023, 51(2): 452-468.

    [8] [8] HAN Fei. Interfacial regulation and performance study of high efficiency and low hysteresis perovskite solar cells[D]. Chengdu: University of Electronic Science and Technology of China, 2020.

    [9] [9] CHEN P, BAI Y, LYU M Q, et al. Progress and perspective in low-dimensional metal halide perovskites for optoelectronic applications[J]. Solar RRL, 2018, 2(3): 1700186.

    [10] [10] HAN Fei, WANG Lingling, LIN Yuan, et al. J Ceram, 2023, 44(1): 12-27.

    [11] [11] HAN F, LUO J S, WAN Z Q, et al. Dissolution-recrystallization method for high efficiency perovskite solar cells[J]. Appl Surf Sci, 2017, 408: 34-37.

    [12] [12] HAN Fei, WANG Lingling, LIN Yuan. J Ceram, 2023, 44(3): 417-433.

    [13] [13] KIM I S, JO C, KANG R, et al. Fabrication-method-dependent excited state dynamics in CH3NH3PbI3 perovskite films[J]. Sci Rep, 2017, 7(1): 16516.

    [14] [14] WANG H P, MA J M, ZHANG J, et al. Gas sensing materials roadmap[J]. J Phys Condens Matter, 2021, 33(30): 303001.

    [15] [15] HE Y H, HADAR I, KANATZIDIS M G. Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods[J]. Nat Photonics, 2022, 16(1): 14-26.

    [16] [16] LEE J W, TAN S, SEOK S I, et al. Rethinking the A cation in halide perovskites[J]. Science, 2022, 375(6583): eabj1186.

    [17] [17] HAN Fei, WANG Lingling, LIN Yuan, et al. Jiangxi Sci, 2022, 40(1): 140-147.

    [18] [18] ZHAO Y X, ZHU K. Optical bleaching of perovskite (CH3NH3)PbI3 through room-temperature phase transformation induced by ammonia[J]. Chem Commun, 2014, 50(13): 1605-1607.

    [19] [19] KIM J H, KIM S H. Sub-second pyridine gas detection using a organometal halide perovskite functional dye[J]. Dyes Pigm, 2016, 134: 198-202.

    [20] [20] FU X W, JIAO S L, DONG N, et al. A CH3NH3PbI3 film for a room-temperature NO2 gas sensor with quick response and high selectivity[J]. RSC Adv, 2018, 8(1): 390-395.

    [21] [21] YU X Y, TSAO H N, ZHANG Z L, et al. Miscellaneous and perspicacious: Hybrid halide perovskite materials based photodetectors and sensors[J]. Adv Opt Mater, 2020, 8(21): 2001095.

    [22] [22] QI Yao. Study on gas sensing characteristics of two-dimensional perovskite Cs2PbI2(SCN)2[D]. Beijing: North China Electric Power University, 2020.

    [23] [23] ZHUANG Y, YUAN W J, QIAN L, et al. High-performance gas sensors based on a thiocyanate ion-doped organometal halide perovskite[J]. Phys Chem Chem Phys, 2017, 19(20): 12876-12881.

    [24] [24] ZHU R M, ZHANG Y Z, ZHONG H, et al. High-performance room-temperature NO2 sensors based on CH3NH3PbBr3 semiconducting films: Effect of surface capping by alkyl chain on sensor performance[J]. J Phys Chem Solids, 2019, 129: 270-276.

    [25] [25] CASANOVA-CHáFER J, GARCíA-ABOAL R, ATIENZAR P, et al. Gas sensing properties of perovskite decorated graphene at room temperature[J]. Sensors, 2019, 19(20): 4563.

    [26] [26] HIEN V X, HOAT P D, HUNG P T, et al. Room-temperature NO2 sensor based on a hybrid nanomaterial of methylammonium tin iodide submicron spheres and tin dioxide nanowires[J]. Scr Mater, 2020, 188: 107-111.

    [27] [27] CHEN H J, ZHANG M, FU X, et al. Light-activated inorganic CsPbBr2I perovskite for room-temperature self-powered chemical sensing[J]. Phys Chem Chem Phys, 2019, 21(43): 24187-24193.

    [28] [28] SUN X, YANG J, WU Z L, et al. Lead-free CsCu2I3 perovskite nanostructured networks gas sensor for selective detection of trace nitrogen dioxide at room temperature[J]. IEEE Sens J, 2021, 21(13): 14677-14684.

    [29] [29] LU Z, LOU C, CHENG A, et al. A sensitive and ultrafast FA0.83Cs0.17PbI3 perovskite sensor for NO2 detection at room temperature[J]. J Alloy Compd, 2022, 919: 165831.

    [30] [30] HUNG P T, HOAT P D, NGUYEN T A, et al. Growth and NO2 sensing properties of Cs2SnI6 thin film[J]. Mater Res Bull, 2022, 147: 111628.

    [31] [31] HOAT P D, YUN Y, PARK B, et al. Synthesis of Cs2TeI6 thin film and its NO2 gas-sensing properties under blue-light illumination[J]. Scr Mater, 2022, 207: 114305.

    [32] [32] CHEN Z K, YE W, LIN H Z, et al. Lead-free halide Cs2PtI6 perovskite favoring Pt-N bonding for trace NO detection[J]. ACS Sens, 2021, 6(10): 3800-3807.

    [33] [33] CHEN Z K, YE W, WANG J A, et al. Sensitive NO detection by lead-free halide Cs2TeI6 perovskite with Te—N bonding[J]. Sens Actuat B Chem, 2022, 357: 131397.

    [34] [34] MAITY A, GHOSH B. Fast response paper based visual color change gas sensor for efficient ammonia detection at room temperature[J]. Sci Rep, 2018, 8(1): 16851.

    [35] [35] SHEIKH A D, VHANALAKAR V, KATWARE A, et al. Two-step antisolvent precipitated MAPbI3-pellet-based robust room-temperature ammonia sensor[J]. Adv Mater Technol, 2019, 4(9): 1900251.

    [36] [36] MAITY A, RAYCHAUDHURI A K, GHOSH B. High sensitivity NH3 gas sensor with electrical readout made on paper with perovskite halide as sensor material[J]. Sci Rep, 2019, 9: 7777.

    [37] [37] JIN Huijiao, LI Yan, ZENG Yan, et al. Micronanoelectronic Technol, 2017, 54(2): 101-106.

    [38] [38] LI G S, ZHANG Y, LIN J Q, et al. Anomalous NH3-induced resistance enhancement in halide perovskite MAPbI3 film and gas sensing performance[J]. J Phys Chem Lett, 2021, 12(46): 11339-11345.

    [39] [39] SHEIKH A D, VHANALAKAR V K, KATWARE A S, et al. Ultrasensitive organic-inorganic nanotube thin films of halogenated perovskites as room temperature ammonia sensors[J]. J Alloys Compd, 2022, 894: 162388.

    [40] [40] JIAO W L, HE J, ZHANG L. Synthesis and high ammonia gas sensitivity of (CH3NH3)PbBr3-xIx perovskite thin film at room temperature[J]. Sens Actuat B Chem, 2020, 309: 127786.

    [41] [41] BHOSALE M K, KAZI A I, PAWAR K K, et al. Eco-friendly MA3Bi2I9 perovskite thin films based ammonia sensor[J]. Nanotechnology, 2022, 34(6): 065501.

    [42] [42] RUAN S A, LU J F, PAI N, et al. An optical fibre-based sensor for the detection of gaseous ammonia with methylammonium lead halide perovskite[J]. J Mater Chem C, 2018, 6(26): 6988-6995.

    [43] [43] SINGH A K, SINGH S, SINGH V N, et al. Probing reversible photoluminescence alteration in CH3NH3PbBr3 colloidal quantum dots for luminescence-based gas sensing application[J]. J Colloid Interface Sci, 2019, 554: 668-673.

    [44] [44] LI G S, ZHANG W Q, SHE C K, et al. Stable fluorescent NH3 sensor based on MAPbBr3 encapsulated by tetrabutylammonium cations[J]. J Alloys Compd, 2020, 835: 155386.

    [45] [45] MAITY A, MITRA S, DAS C, et al. Universal sensing of ammonia gas by family of lead halide perovskites based on paper sensors: Experiment and molecular dynamics[J]. Mater Res Bull, 2021, 136: 111142.

    [46] [46] LI G S, SHE C K, ZHANG Y, et al. A “turn-on” fluorescence perovskite sensor based on MAPbBr3/mesoporous TiO2 for NH3 and amine vapor detections[J]. Sens Actuat B Chem, 2021, 327: 128918.

    [47] [47] HUANG H, HAO M W, SONG Y L, et al. Dynamic passivation in perovskite quantum dots for specific ammonia detection at room temperature[J]. Small, 2020, 16(6): 1904462.

    [48] [48] HUANG Y H, ZHANG J L, ZHANG X W, et al. The ammonia detection of cesium lead halide perovskite quantum dots in different halogen ratios at room temperature[J]. Opt Mater, 2022, 134: 113155.

    [49] [49] JIAO W L, HE J, ZHANG L. Fabrication and investigation of a new all-inorganic lead free perovskite Cs3Bi2I6Br3 for ammonia detection at room temperature[J]. J Alloys Compd, 2022, 895: 162561.

    [50] [50] LI G S, ZHANG Y, ZHAO X Y, et al. Bismuth-based lead-free perovskite film for highly sensitive detection of ammonia gas[J]. Sens Actuat B Chem, 2021, 345: 130298.

    [51] [51] YUNIN M Y A M, ADENAM N M, KHAIRUL W M, et al. Effect of stability of two-dimensional (2D) aminoethyl methacrylate perovskite using lead-based materials for ammonia gas sensor application[J]. Polymers, 2022, 14(9): 1853.

    [52] [52] LEE K Y, HSIEH J C, CHEN C A, et al. Ultrasensitive detection of hydrogen sulfide gas based on perovskite vertical channel chemo-sensor[J]. Sens Actuat B Chem, 2021, 326: 128988.

    [53] [53] KIRAKOSYAN A, SIHN M R, JEON M G, et al. Self-aligned CH3NH3PbBr3 perovskite nanowires via dielectrophoresis for gas sensing applications[J]. Appl Mater Today, 2022, 26: 101307.

    [54] [54] AYESH A I, ALGHAMDI S A, SALAH B, et al. High sensitivity H2S gas sensors using lead halide perovskite nanoparticles[J]. Results Phys, 2022, 35: 105333.

    [55] [55] SHAN H S, XUAN W F, LI Z, et al. Room-temperature hydrogen sulfide sensor based on tributyltin oxide functionalized perovskite CsPbBr3 quantum dots[J]. ACS Appl Nano Mater, 2022, 5(5): 6801-6809.

    [56] [56] NUR’AINI A, OH I. Volatile organic compound gas sensors based on methylammonium lead iodide perovskite operating at room temperature[J]. RSC Adv, 2020, 10(22): 12982-12987.

    [57] [57] XUAN W, SHAN H, HU D, et al. In-situ synthesis of stable ZnO-coated CsPbBr3 nanocrystals for room-temperature heptanal sensors[J]. Mater Today Chem, 2022, 26: 101155.

    [58] [58] XU X L, WANG S Y, CHEN Y, et al. CsPbBr3-based nanostructures for room-temperature sensing of volatile organic compounds[J]. ACS Appl Mater Interfaces, 2022, 14(34): 39524-39534.

    [59] [59] ZHU M Y, HE P, YANG X L, et al. DFT calculation on p-xylene sensing mechanism of (C4H9NH3)2PbI4 single crystal based on physisorption[J]. Rare Met, 2021, 40(6): 1571-1577.

    [60] [60] KAKAVELAKIS G, GAGAOUDAKIS E, PETRIDIS K, et al. Solution processed CH3NH3PbI3-xClx perovskite based self-powered ozone sensing element operated at room temperature[J]. ACS Sens, 2018, 3(1): 135-142.

    [61] [61] CAI S S, JU Y Y, WANG Y M, et al. Fast-response oxygen optical fiber sensor based on PEA2SnI4 perovskite with extremely low limit of detection[J]. Adv Sci, 2022, 9(8): e2104708.

    [62] [62] LIU H, CHEN Y L, DONG Z, et al. The preparation of CH3NH3SnI3/ SnO2/Pd/Au gas sensor material for detecting CO and the function of each component[J]. J Mater Sci Mater Electron, 2022, 33(10): 7463-7476.

    [63] [63] HUANG G B, ZHOU Y M, LI F M, et al. An effective and reliable fluorescent sensor for selective detection of methylamine gas based on in-situ formation of MAPbBr3 perovskite nanocrystals in electrospun fibers[J]. Sens Actuat B Chem, 2021, 347: 130618.

    Tools

    Get Citation

    Copy Citation Text

    HAN Fei, WANG Lingling, CHEN Wei, HU Yin, ZHANG Fen, SHAO Wei. Halide Perovskite Sensitive Materials and Their Gas Sensing Applications[J]. Journal of the Chinese Ceramic Society, 2024, 52(1): 292

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Apr. 20, 2023

    Accepted: --

    Published Online: Jul. 30, 2024

    The Author Email: Lingling WANG (sunnyskywang@163.com)

    DOI:

    CSTR:32186.14.

    Topics