Acta Optica Sinica, Volume. 43, Issue 11, 1104001(2023)

A Low-Noise Quadrant Photodetector for Levitated Optomechanical Systems

Yingying Wang1, Peitong He1, Tao Liang1, Xiaowen Gao1、*, Jing Jiang2, Xingfan Chen2, and Huizhu Hu1,2、**
Author Affiliations
  • 1Research Center for Quantum Sensing, Zhejiang Lab, Hangzhou 310023, Zhejiang, China
  • 2College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • show less
    References(28)

    [1] Li Y M, Gong L, Li D et al. Progress in optical tweezers technology[J]. Chinese Journal of Lasers, 42, 0101001(2015).

    [2] Han X, Chen X L, Xiong W et al. Vaccum optical tweezers system and its research progress in precision measurement[J]. Chinese Journal of Lasers, 48, 0401011(2021).

    [3] Gieseler J, Novotny L, Quidant R. Thermal nonlinearities in a nanomechanical oscillator[J]. Nature Physics, 9, 806-810(2013).

    [4] Kuhn S, Stickler B A, Kosloff A et al. Optically driven ultra-stable nanomechanical rotor[J]. Nature Communications, 8, 1-5(2017).

    [5] Moore D C, Geraci A A. Searching for new physics using optically levitated sensors[J]. Quantum Science and Technology, 6, 014008(2021).

    [6] Tebbenjohanns F, Frimmer M, Jain V et al. Motional sideband asymmetry of a nanoparticle optically levitated in free space[J]. Physical Review Letters, 124, 013603(2020).

    [7] Blakemore C P, Rider A D, Roy S et al. Three-dimensional force-field microscopy with optically levitated microspheres[J]. Physical Review A, 99, 023816(2019).

    [8] Kawasaki A, Fieguth A, Priel N et al. High sensitivity, levitated microsphere apparatus for short-distance force measurements[J]. The Review of Scientific Instruments, 91, 083201(2020).

    [9] Monteiro F, Li W Q, Afek G et al. Force and acceleration sensing with optically levitated nanogram masses at microkelvin temperatures[J]. Physical Review A, 101, 053835(2020).

    [10] Ranjit G, Cunningham M, Casey K et al. Zeptonewton force sensing with nanospheres in an optical lattice[J]. Physical Review A, 93, 053801(2016).

    [11] Monteiro F, Ghosh S, Fine A G et al. Optical levitation of 10-ng spheres with nano-g acceleration sensitivity[J]. Physical Review A, 96, 063841(2017).

    [12] Xiong F, Yin P R, Wu T et al. Lens-free optical detection of thermal motion of a submillimeter sphere diamagnetically levitated in high vacuum[J]. Physical Review Applied, 16, L011003(2021).

    [13] Armata F, Latmiral L, Plato A D K et al. Quantum limits to gravity estimation with optomechanics[J]. Physical Review A, 96, 043824(2017).

    [14] Hebestreit E, Frimmer M, Reimann R et al. Sensing static forces with free-falling nanoparticles[J]. Physical Review Letters, 121, 063602(2018).

    [15] Zheng Y. Feedback control of the optical levitation in vaccum[D](2019).

    [16] Delić U, Reisenbauer M, Dare K H et al. Cooling of a levitated nanoparticle to the motional quantum ground state[J]. Science, 367, 892-895(2020).

    [17] Magrini L, Rosenzweig P, Bach C et al. Real-time optimal quantum control of mechanical motion at room temperature[J]. Nature, 595, 373-377(2021).

    [18] Tebbenjohanns F, Mattana M L, Rossi M et al. Quantum control of a nanoparticle optically levitated in cryogenic free space[J]. Nature, 595, 378-382(2021).

    [19] Tischer C, Pralle A, Florin E L. Determination and correction of position detection nonlinearity in single particle tracking and three-dimensional scanning probe microscopy[J]. Microscopy and Microanalysis, 10, 425-434(2004).

    [20] Ranjit G, Atherton D P, Stutz J H et al. Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum[J]. Physical Review A, 91, 051805(2015).

    [21] Millen J, Deesuwan T, Barker P et al. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere[J]. Nature Nanotechnology, 9, 425-429(2014).

    [22] Xiong W, Xiao G Z, Han X et al. Back-focal-plane displacement detection using side-scattered light in dual-beam fiber-optic traps[J]. Optics Express, 25, 9449-9457(2017).

    [23] Hebestreit E. Thermal properties of levitated nanoparticles[D](2017).

    [24] Vijayan J, Zhang Z, Piotrowski J et al. Scalable all-optical cold damping of levitated nanoparticles[J]. Nature Nanotechnology, 18, 49-54(2023).

    [25] Liang T, Zhu S C, He P T et al. Yoctonewton force detection based on optically levitated oscillator[J]. Fundamental Research, 3, 57-62(2023).

    [26] Graeme J[M]. Photodiode amplifiers: OP AMP solutions. Lai K S, Xu Z M, Wang X X, Transl, 41, 92, 113(2012).

    [27] Wang J J, Jia X J, Peng K C. Improvement of balanced homodyne detector[J]. Acta Optica Sinica, 32, 0127001(2012).

    [28] Jin X L. Study on kHz balanced homodyne detector[J]. Laser & Optoelectronics Progress, 58, 0927003(2021).

    Tools

    Get Citation

    Copy Citation Text

    Yingying Wang, Peitong He, Tao Liang, Xiaowen Gao, Jing Jiang, Xingfan Chen, Huizhu Hu. A Low-Noise Quadrant Photodetector for Levitated Optomechanical Systems[J]. Acta Optica Sinica, 2023, 43(11): 1104001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Detectors

    Received: Nov. 18, 2022

    Accepted: Feb. 21, 2023

    Published Online: May. 29, 2023

    The Author Email: Gao Xiaowen (gaoxw@zhejianglab.com), Hu Huizhu (huhuizhu2000@zju.edu.cn)

    DOI:10.3788/AOS222013

    Topics