Journal of Synthetic Crystals, Volume. 53, Issue 10, 1798(2024)

Preparation and Photocatalytic Performance of Bi1-xLaxFe1-yMnyO3

LI Yanmei1... ZHANG Jiarui1, KUANG Daihong1,2,*, YANG Jiadong2 and AWABAIKELI Rousuli2 |Show fewer author(s)
Author Affiliations
  • 1College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
  • 2College of Mathematics and Science, Xinjiang Agricultural University, Urumqi 830052, China
  • show less
    References(34)

    [1] [1] SHI J H. Identifying the influence of natural and human factors on seasonal water quality in China: current situation of China’s water environment and policy impact[J]. Environmental Science and Pollution Research, 2023, 30(47): 104852-104869.

    [2] [2] WANG S F, LI Y, LIU Q, et al. Photo-/electro-/piezo-catalytic elimination of environmental pollutants[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 437: 114435.

    [3] [3] ZHOU T H, ZHAI T J, SHEN H D, et al. Strategies for enhancing performance of perovskite bismuth ferrite photocatalysts (BiFeO3): a comprehensive review[J]. Chemosphere, 2023, 339: 139678.

    [4] [4] MUSIE W, GONFA G. Fresh water resource, scarcity, water salinity challenges and possible remedies: a review[J]. Heliyon, 2023, 9(8): e18685.

    [5] [5] LI D Y, XU K, NIU Z Y, et al. Annealing and plasma effects on the structural and photocatalytic properties of TiO2 fibers produced by electrospinning[J]. Catalysts, 2022, 12(11): 1441.

    [6] [6] KUTUZOVA A, DONTSOVA T, KWAPINSKI W. Application of TiO2-based photocatalysts to antibiotics degradation: cases of sulfamethoxazole, trimethoprim and ciprofloxacin[J]. Catalysts, 2021, 11(6): 728.

    [8] [8] YAN F X, ZHAO G Y, SONG N, et al. In situ synthesis and characterization of fine-patterned La and Mn co-doped BiFeO3 film[J]. Journal of Alloys and Compounds, 2013, 570: 19-22.

    [9] [9] HASELMANN U, RADLINGER T, PEI W J, et al. Ca solubility in a BiFeO3-based system with a secondary Bi2O3 phase on a nanoscale[J]. The Journal of Physical Chemistry C, Nanomaterials and Interfaces, 2022, 126(17): 7696-7703.

    [11] [11] CAGLAR B, ER F, ZDOKUR K V, et al. A novel amperometric H2O2 biosensor constructed by cress peroxidase entrapped on BiFeO3 nanoparticles[J]. Materials Chemistry and Physics, 2021, 262: 124287.

    [12] [12] INDRIYANI A, YULIZAR Y, TRI YUNARTI R, et al. One-pot green fabrication of BiFeO3 nanoparticles via Abelmoschus esculentus L. leaves extracts for photocatalytic dye degradation[J]. Applied Surface Science, 2021, 563: 150113.

    [13] [13] GUMIEL C, CALATAYUD D G. Thin film processing of multiferroic BiFeO3: from sophistication to simplicity. A review[J]. Boletn De La Sociedad Espaola De Cermica y Vidrio, 2022, 61(6): 708-732.

    [14] [14] OLADIPO A A, MUSTAFA F S. Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes[J]. Beilstein Journal of Nanotechnology, 2023, 14: 291-321.

    [15] [15] THOMAS N, DIONYSIOU D D, PILLAI S C. Heterogeneous Fenton catalysts: a review of recent advances[J]. Journal of Hazardous Materials, 2021, 404(Pt B): 124082.

    [18] [18] AHAD A, PODDER J, SAHA T, et al. Effect of chromium doping on the band gap tuning of titanium dioxide thin films for solar cell applications[J]. Heliyon, 2024, 10(1): 23096.

    [19] [19] ABDULLAH J A A, JIMNEZ-ROSADO M, GUERRERO A, et al. Effect of calcination temperature and time on the synthesis of iron oxide nanoparticles: green vs. chemical method[J]. Materials, 2023, 16(5): 1798.

    [20] [20] SU K, HUANG K, YANG H, et al. Structural and magnetic properties on Sr-substituted BiFeO3 perovskite nanoferrites[J]. Transactions on Condensed Matter Physics, 2022, 1(1): 1-6.

    [21] [21] SANGA P, WANG J J, LI X, et al. Effective removal of sulfonamides using recyclable MXene-decorated bismuth ferrite nanocomposites prepared via hydrothermal method[J]. Molecules, 2023, 28(4): 1541.

    [22] [22] PREETHA R, GOVINDA RAJ M, VIJAYAKUMAR E, et al. Promoting photocatalytic interaction of boron doped reduced graphene oxide supported BiFeO3 nanocomposite for visible-light-induced organic pollutant degradation[J]. Journal of Alloys and Compounds, 2022, 904: 164038.

    [23] [23] WANG L K, WANG J F, YE C Y, et al. Photodeposition of CoOx nanoparticles on BiFeO3 nanodisk for efficiently piezocatalytic degradation of rhodamine B by utilizing ultrasonic vibration energy[J]. Ultrasonics Sonochemistry, 2021, 80: 105813.

    [24] [24] YE Y C, YANG H, WANG X X, et al. Photocatalytic, Fenton and photo-Fenton degradation of RhB over Z-scheme g-C3N4/LaFeO3 heterojunction photocatalysts[J]. Materials Science in Semiconductor Processing, 2018, 82: 14-24.

    [26] [26] KOROTAEV E V, SYROKVASHIN M M, FILATOVA I Y. Thermoelectric and magnetic properties and electronic structure of solid solutions CuCr1-xLaxS2[J]. Journal of Composites Science, 2023, 7(10): 436.

    [27] [27] LIU Z F, TAN Y Q, RUAN X F, et al. Spark plasma sintering-assisted synthesis of Bi2Fe4O9/Bi25FeO40 heterostructures with enhanced photocatalytic activity for removal of antibiotics[J]. International Journal of Molecular Sciences, 2022, 23(20): 12652.

    [31] [31] LAM S M, JAFFARI Z H, SIN J C, et al. Insight into the influence of noble metal decorated on BiFeO3 for 2, 4-dichlorophenol and real herbicide wastewater treatment under visible light[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614: 126138.

    [33] [33] GHORBANI M, SHEIBANI S, ABDIZADEH H, et al. Modified BiFeO3/rGO nanocomposite by controlled synthesis to enhance adsorption and visible-light photocatalytic activity[J]. Journal of Materials Research and Technology, 2023, 22: 1250-1267.

    [34] [34] LI X Y, TANG Z X, MA H D, et al. PVP-assisted hydrothermal synthesis and photocatalytic activity of single-crystalline BiFeO3 nanorods[J]. Applied Physics A, 2019, 125(9): 598.

    [35] [35] SATHIYA PRIYA A, GEETHA D, HENRY J. Effect of Cu and Sm doping on the ferroelectric character of bismuth ferrite thin films[J]. Phosphorus, Sulfur, and Silicon and the Related Elements, 2022, 197(3): 158-163.

    [36] [36] PRIYA A S, GEETHA D, SIQUEIROS J M, et al. Tunable optical and multiferroic properties of zirconium and dysprosium substituted bismuth ferrite thin films[J]. Molecules, 2022, 27(21): 7565.

    [37] [37] XU H X, XU J H, LI H B, et al. Highly sensitive ethanol and acetone gas sensors with reduced working temperature based on Sr-doped BiFeO3 nanomaterial[J]. Journal of Materials Research and Technology, 2022, 17: 1955-1963.

    [38] [38] JEVTI I, JAKI S, OJI MERKULOV D, et al. Matrix effects of different water types on the efficiency of fumonisin B1 removal by photolysis and photocatalysis using ternary- and binary-structured ZnO-based nanocrystallites[J]. Catalysts, 2023, 13(2): 375.

    [39] [39] KAMIL F H, BARNO S K A, SHEMS F, et al. Photocatalytic degradation of sulfamethoxazole from a synthetic pharmaceutical wastewater using titanium dioxide (TiO2) powder as a suspended heterogeneous catalyst[J]. Iraqi Journal of Industrial Research, 2023, 10(1): 26-33.

    [40] [40] GHERBI B, LAOUINI S E, MENECEUR S, et al. Effect of pH value on the bandgap energy and particles size for biosynthesis of ZnO nanoparticles: efficiency for photocatalytic adsorption of methyl orange[J]. Sustainability, 2022, 14(18): 11300.

    [41] [41] NGO H S, NGUYEN T L, TRAN N T, et al. Photocatalytic removal of ciprofloxacin in water by novel sandwich-like CuFe2O4 on rGO/halloysite material: insights into kinetics and intermediate reactive radicals[J]. Water, 2023, 15(8): 1569.

    [43] [43] LIN X H, ZHOU W M, LI S Y, et al. Photodegradation of sulfamethoxazole and enrofloxacin under UV and simulated solar light irradiation[J]. Water, 2023, 15(3): 517.

    [44] [44] RAD S M, RAY A K, BARGHI S. Enhancing photon transfer efficiency in photocatalysis using suspended LED lights for water treatment[J]. Reactions, 2023, 4(2): 246-253.

    Tools

    Get Citation

    Copy Citation Text

    LI Yanmei, ZHANG Jiarui, KUANG Daihong, YANG Jiadong, AWABAIKELI Rousuli. Preparation and Photocatalytic Performance of Bi1-xLaxFe1-yMnyO3[J]. Journal of Synthetic Crystals, 2024, 53(10): 1798

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 10, 2024

    Accepted: Jan. 17, 2025

    Published Online: Jan. 17, 2025

    The Author Email: Daihong KUANG (416799621@qq.com)

    DOI:

    CSTR:32186.14.

    Topics