Optoelectronics Letters, Volume. 20, Issue 10, 629(2024)
EAE-Net: effective and efficient X-ray joint detection
[1] [1] LITJENS G J S, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis[J].Medical image analysis, 2017, 42: 60-88.
[2] [2] MIOTTO R, WANG F, WANG S, et al. Deep learning for healthcare: review, opportunities and challenges[J]. Briefings in bioinformatics, 2018, 19(6): 1236-1246.
[3] [3] WANG C Y, LIAO H Y M, YEH I H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Conference on Computer Vision and Pattern Recognition (CVPR), June 14-19, 2020, Seattle, WA,USA. New York: IEEE, 2020: 1571-1580.
[4] [4] TAGHANAKI S A, ABHISHEK K, COHEN J P, et al. Deep semantic segmentation of natural and medical images: a review[J]. Artificial intelligence review, 2021,54(1): 137-178.
[5] [5] REN S, HE K, GIRSHICK R B, et al. Faster RCNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems 28, December 7-12, 2015, Montreal, Quebec, Canada. Ottawa: NIPS, 2015, 28: 91-99.
[6] [6] REDMON J, FARHADI A. YOLOV3: an incremental improvement[EB/OL]. (2018-04-08) [2023-05-23].https://arxiv.org/abs/1804.02767.
[7] [7] HAN Y, CHEN C, TEWFIK A H, et al. Pneumonia detection on chest X-ray using radiomic features and contrastive learning[C]//International Symposium on Biomedical Imaging, April 13-16, 2021, Nice, France. 247-251.
[8] [8] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[C]//IEEE International Conference on Learning Representations, May 3-7, 2021, Austria.New York: IEEE, 2021.
[9] [9] HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Conference on Computer Vision and Pattern Recognition (CVPR), June 13-19,2020, Seattle, WA, USA. New York: IEEE, 2020:1577-1586.
[10] [10] LI J, XU Z, XU L. Vehicle and pedestrian detection method based on improved YOLOV4-tiny[J]. Optoelectronics letters, 2023, 19(10): 623-628.
[11] [11] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9): 1904-1916.
[12] [12] HE K M, ZHANG X Y. Deep residual learning for image recognition[C]//Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 2016: 770-778.
[13] [13] JIANG P, ERGU D, LIU F, et al. A review of YOLO algorithm developments[C]//Proceedings of the 8th International Conference on Information Technology and Quantitative Management, July 9-11, 2021, Chengdu,China. Amsterdam: Elsevier, 2021, 199: 1066-1073.
[14] [14] ZHOU X Y, WANG D Q, KRHENBüHL P. Objects as points[EB/OL]. (2019-04-16) [2023-05-23].https://arxiv. org/abs/1904.07850v1.
[15] [15] ZHANG H, LU C, CHEN E. Obstacle detection: improved YOLOX-S based on swin transformer-tiny[J].Optoelectronics letters, 2023, 19(11): 698-704.
Get Citation
Copy Citation Text
WU Zhichao, WAN Mingxuan, BAI Haohao, MA Jianxiong, MA Xinlong. EAE-Net: effective and efficient X-ray joint detection[J]. Optoelectronics Letters, 2024, 20(10): 629
Received: Jul. 12, 2023
Accepted: Apr. 3, 2024
Published Online: Sep. 20, 2024
The Author Email: Xinlong MA (maxinlong8686@sina.com)