Photonic Sensors, Volume. 10, Issue 2, 105(2020)

Enhancement of Surface Plasmon Fiber Sensor Sensitivity Through the Grafting of Gold Nanoparticles

Elena MILIUTINA1...2, Yevgeniya KALACHYOVA2, Pavel POSTNIKOV1,2, Vaclav ?VOR?íK1, and Oleksiy LYUTAKOV12,* |Show fewer author(s)
Author Affiliations
  • 1Department of Solid-State Engineering, Institute of Chemical Technology, Prague 16628, Czech Republic
  • 2Department of Technology of Organic Substances and Polymer Materials, Tomsk Polytechnic University, Tomsk 634050, Russia
  • show less
    References(33)

    [1] [1] O. Guselnikova, P. Postnikov, M. Erzina, Y. Kalachyova, V. -vor-ík, and O. Lyutakov, “Pretreatment-free selective and reproducible SERS-based detection of heavy metal ions on DTPA functionalized plasmonic platform,” Sensors and Actuators B: Chemical, 2017, 253: 830– 838.

    [2] [2] S. Liu, Z. Zheng, and X. Li, “Advances in pesticide biosensors: current status challenges and future perspectives,” Analytical and Bioanalytical Chemistry, 2013, 405(1): 63–90.

    [3] [3] R. C. Stevens, S. D. Soelberg, S. Near, and C. E. Furlong, “Detection of cortisol in saliva with a flow-filtered portable surface plasmon resonance biosensor system,” Analytical Chemistry, 2008, 80(17): 6747–6751.

    [4] [4] X. Guo, “Surface plasmon resonance based biosensor technique: a review,” Journal of Biophotonics, 2012, 5(7): 483–501.

    [5] [5] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Materials, 2008, 7(6): 442–453.

    [6] [6] D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photonics, 2010, 4(2): 83–91.

    [7] [7] J. Svanda, Y. Kalachyova, P. Slepicka, V. Svorcik, and O. Lyutakov, “Smart component for switching of plasmon resonance by external electric field,” ACS Applied Materials & Interfaces, 2015, 8(1): 225–231.

    [8] [8] C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Analytical and Bioanalytical Chemistry, 2015, 407(14): 3883–3897.

    [9] [9] C. Wadell, S. Syrenova, and C. Langhammer, “Plasmonic hydrogen sensing with nanostructured metal hydrides,” ACS Nano, 2014, 8(12): 11925–11940.

    [10] [10] I. Arghir, F. Delport, D. Spasic, and J. Lammertyn, “Smart design of fiber optic surfaces for improved plasmonic biosensing,” New Biotechnology, 2015, 32(5): 473–484.

    [11] [11] N. Khansili, G. Rattu, and P. M. Krishna, “Label-free optical biosensors for food and biological sensor applications,” Sensors and Actuators B: Chemical, 2018, 265: 35–49.

    [12] [12] I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 2008, 28(3): 214–242.

    [13] [13] R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sensors and Actuators B: Chemical, 2007, 123(1): 10–12.

    [14] [14] Y. Chen, Y. Yu, X. Li, Z. Tan, and Y. Geng, “Experimental comparison of fiber-optic surface plasmon resonance sensors with multi metal layers and single silver or gold layer,” Plasmonics, 2015, 10(6): 1801–1808.

    [15] [15] J. Homola, “Surface plasmon resonance (SPR),” Analytical and Bioanalytical Chemistry, 2003, 377: 528–539.

    [16] [16] W. Hu, Y. Huang, C. Chen, Y. Liu, T. Guo, and B. O. Guan, “Highly sensitive detection of dopamine using a graphene functionalized plasmonic fiber-optic sensor with aptamer conformational amplification,” Sensors and Actuators B: Chemical, 2018, 264: 440–447.

    [17] [17] V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosensors and Bioelectronics, 2014, 51: 249–254.

    [18] [18] Q. Liu, Y. Liu, S. Chen, F. Wang, and W. Peng, “A low-cost and portable dual-channel fiber optic surface plasmon resonance system,” Sensors, 2017, 17(12): 2797–2804.

    [19] [19] B. Lee, J. H. Park, J. Y. Byun, J. H. Kim, and M. G. Kim, “An optical fiber-based LSPR aptasensor for simple and rapid in-situ detection of ochratoxin,” Biosensors and Bioelectronics, 2018, 102: 504–509.

    [20] [20] S. K. Mishra and B. D. Gupta, “Surface plasmon resonance based fiber optic pH sensor utilizing Ag/ITO/Al/hydrogel layers,” Analyst, 2013, 138(9): 2640–2646.

    [21] [21] X. Yang, Y. Lu, B. Liu, and J. Yao, “High sensitivity hollow fiber temperature sensor based on surface plasmon resonance and liquid filling,” IEEE Photonics Journal, 2018, 10(2): 1–9.

    [22] [22] J. F. Masson, L. Obando, S. Beaudoin, and K. Booksh, “Sensitive and real-time fiber-optic-based surface plasmon resonance sensors for myoglobin and cardiac troponin I,” Talanta, 2004, 62(5): 865–870.

    [23] [23] T. Guo, F. Liu, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Optics & Laser Technology, 2016, 78: 19–33.

    [24] [24] P. Jia and J. Yang, “Integration of large-area metallic nanohole arrays with multimode optical fibers for surface plasmon resonance sensing,” Applied Physics Letters, 2013, 102(24): 243107.

    [25] [25] G. Nemova and R. Kashyap, “Fiber-Bragggrating- assisted surface plasmon-polariton sensor,” Optics Letters, 2006, 31(14): 2118–2120.

    [26] [26] Y. Kalachyova, D. Mares, V. Jerabek, P. Ulbrich, L. Lapcak, V. Svorcik, et al., “Ultrasensitive and reproducible SERS platform of coupled Ag grating with multibranched Au nanoparticles,” Physical Chemistry Chemical Physics, 2017, 19(22): 14761–14769.

    [27] [27] Y. Kalachyova, D. Mares, V. Jerabek, K. Zaruba, P. Ulbrich, L. Lapcak, et al., “The effect of silver grating and nanoparticles grafting for LSP-SPP coupling and SERS response intensification,” The Journal of Physical Chemistry C, 2016, 120(19): 10569–10577.

    [28] [28] T. Maurer, P. M. Adam, and G. Lévêque, “Coupling between plasmonic films and nanostructures: from basics to applications,” Nanophotonics, 2015, 4(3): 363–382.

    [29] [29] I. Kaminska, T. Maurer, R. Nicolas, M. Renault, T. Lerond, R. Salas-Montiel, et al., “Near-field and far-field sensitivities of LSPR sensors,” The Journal of Physical Chemistry C, 2015, 119(17): 9470–9476.

    [30] [30] A. Saini, R. Medwal, S. Bedi, B. Mehta, R. Gupta, T. Maurer, et. al., “Axonic Au tips induced enhancement in Raman spectra and biomolecular sensing,” Plasmonics, 2015, 10(3): 617–623.

    [31] [31] Y. Kalachyova, A. Olshtrem, O. A. Guselnikova, P. S. Postnikov, R. Elashnikov, P. Ulbrich, et al., “Synthesis characterization and antimicrobial activity of near-IR photoactive functionalized gold multibranched nanoparticles,” Chemistryopen, 2017, 6(2): 254–260.

    [32] [32] P. Bhatia and B. D. Gupta, “Surface-plasmonresonance- based fiber-optic refractive index sensor: sensitivity enhancement,” Applied Optics, 2011, 50(14): 2032–2036.

    [33] [33] S. Singh, S. K. Mishra, and B. D. Gupta, “Sensitivity enhancement of a surface plasmon resonance based fibre optic refractive index sensor utilizing an additional layer of oxides,” Sensors and Actuators A: Physical, 2013, 193: 136–140.

    Tools

    Get Citation

    Copy Citation Text

    Elena MILIUTINA, Yevgeniya KALACHYOVA, Pavel POSTNIKOV, Vaclav ?VOR?íK, Oleksiy LYUTAKOV. Enhancement of Surface Plasmon Fiber Sensor Sensitivity Through the Grafting of Gold Nanoparticles[J]. Photonic Sensors, 2020, 10(2): 105

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Regular

    Received: Jan. 31, 2019

    Accepted: May. 8, 2019

    Published Online: Dec. 23, 2020

    The Author Email: LYUTAKOV Oleksiy (lyutakoo@vscht.cz)

    DOI:10.1007/s13320-019-0562-9

    Topics