Photonics Research, Volume. 10, Issue 7, 1712(2022)

Simultaneous multiple time scale imaging for kHz–MHz high-speed accelerometry Spotlight on Optics

Vassily Kornienko*, David Andersson, Mehdi Stiti, Jonas Ravelid, Simon Ek, Andreas Ehn, Edouard Berrocal, and Elias Kristensson
Author Affiliations
  • Division of Combustion Physics, Department of Physics, Lund University, Lund, Sweden
  • show less
    References(47)

    [1] T. Hirata, Z. Miyazaki. High-speed camera imaging for laser ablation process: for further reliable elemental analysis using inductively coupled plasma-mass spectrometry. Anal. Chem., 79, 52-147(2007).

    [2] J. E. Field, E. Amer, P. Gren, M. A. Zafar, S. M. Walley. High-speed photographic study of laser damage and ablation. Imaging Sci. J., 63, 119-136(2015).

    [3] H. Mikami, C. Lei, N. Nitta, T. Sugimura, T. Ito, Y. Ozeki, K. Goda. High-speed imaging meets single-cell analysis. Chem, 4, 2278-2300(2018).

    [4] C. K. Haluska, K. A. Riske, V. Marchi-Artzner, J.-M. Lehn, R. Lipowsky, R. Dimova. Time scales of membrane fusion revealed by direct imaging of vesicle fusion with high temporal resolution. Proc. Natl. Acad. Sci. USA, 103, 15841-15846(2006).

    [5] H. Xing, Q. Zhang, C. Braithwaite, B. Pan, J. Zhao. High-speed photography and digital optical measurement techniques for geomaterials: fundamentals and applications. Rock Mech. Rock Eng., 50, 1611-1659(2017).

    [6] H. Etoh. A high-speed video camera operating at 4500 fps. J. Inst. Telev. Eng. Jpn., 46, 543-545(1992).

    [7] M. Suzuki, Y. Sugama, R. Kuroda, S. Sugawa. Over 100 million frames per second 368 frames global shutter burst CMOS image sensor with pixel-wise trench capacitor memory array. Sensors, 20, 1086(2020).

    [8] J. Manin, S. A. Skeen, L. M. Pickett. Performance comparison of state-of-the-art high-speed video cameras for scientific applications. Opt. Eng., 57, 121706(2018).

    [9] V. T. S. Dao, N. Ngo, A. Q. Nguyen, K. Morimoto, K. Shimonomura, P. Goetschalckx, L. Haspeslagh, P. De Moor, K. Takehara, T. G. Etoh. An image signal accumulation multi-collection-gate image sensor operating at 25 Mfps with 32 × 32 pixels and 1220 in-pixel frame memory. Sensors, 18, 3112(2018).

    [10] O. Shpak, M. Verweij, H. J. Vos, N. de Jong, D. Lohse, M. Versluis. Acoustic droplet vaporization is initiated by superharmonic focusing. Proc. Natl. Acad. Sci. USA, 111, 1697-1702(2014).

    [11] K. Kooiman, H. J. Vos, M. Versluis, N. de Jong. Acoustic behavior of microbubbles and implications for drug delivery. Adv. Drug Delivery Rev., 72, 28-48(2014).

    [12] I. Beekers, M. Vegter, K. R. Lattwein, F. Mastik, R. Beurskens, A. F. van der Steen, N. de Jong, M. D. Verweij, K. Kooiman. Opening of endothelial cell–cell contacts due to sonoporation. J. Controlled Release, 322, 426-438(2020).

    [13] A. Gleason, C. Bolme, H. Lee, B. Nagler, E. Galtier, D. Milathianaki, R. Kraus, J. Eggert, D. Fratanduono, G. Collins, R. Sandberg, W. Yang, W. Mao. Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2. Nat. Commun., 6, 8191(2015).

    [14] P. A. Hart, A. Carpenter, L. Claus, D. Damiani, M. Dayton, F.-J. Decker, A. Gleason, P. Heimann, E. Hurd, E. McBride, S. Nelson, M. Sanchez, S. Song, D. Zhu. First X-ray test of the Icarus nanosecond-gated camera. Proc. SPIE, 11038, 110380Q(2019).

    [15] F. H. Zhang, S. T. Thoroddsen. Satellite generation during bubble coalescence. Phys. Fluids, 20, 022104(2008).

    [16] A. Roth, D. Frantz, W. Chaze, A. Corber, E. Berrocal. High-speed imaging database of water jet disintegration part I: quantitative imaging using liquid laser-induced fluorescence. Int. J. Multiph. Flow, 145, 103641(2021).

    [17] M. Alsved, A. Matamis, R. Bohlin, M. Richter, P.-E. Bengtsson, C.-J. Fraenkel, P. Medstrand, J. Löndahl. Exhaled respiratory particles during singing and talking. Aerosol Sci. Technol., 54, 1245-1248(2020).

    [18] M. Versluis. High-speed imaging in fluids. Exp. Fluids, 54, 1458(2013).

    [19] C. T. Chin, C. Lancée, J. Borsboom, F. Mastik, M. E. Frijlink, N. de Jong, M. Versluis, D. Lohse. Brandaris 128: a digital 25 million frames per second camera with 128 highly sensitive frames. Rev. Sci. Instrum., 74, 5026-5034(2003).

    [20] X. Chen, J. Wang, M. Versluis, N. de Jong, F. S. Villanueva. Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects. Rev. Sci. Instrum., 84, 063701(2013).

    [21] J. Liang, L. V. Wang. Single-shot ultrafast optical imaging. Optica, 5, 1113-1127(2018).

    [22] V. Kornienko, E. Kristensson, A. Ehn, A. Fourriere, E. Berrocal. Beyond MHz image recordings using LEDs and the frame concept. Sci. Rep., 10, 16650(2020).

    [23] K. Maassen, F. Poursadegh, C. Genzale. Spectral microscopy imaging system for high-resolution and high-speed imaging of fuel sprays. J. Eng. Gas Turbine Power, 142, 091004(2020).

    [24] D. Sedarsky, S. Idlahcen, J.-B. Blaisot, C. Rozé. Velocity measurements in the near field of a diesel fuel injector by ultrafast imagery. Exp. Fluids, 54, 1-12(2013).

    [25] L. Yin, M. Lundgren, Z. Wang, P. Stamatoglou, M. Richter, Ö. Andersson, P. Tunestål. High efficient internal combustion engine using partially premixed combustion with multiple injections. Appl. Energy, 233–234, 516-523(2019).

    [26] S. Li, D. Sanned, J. Huang, E. Berrocal, W. Cai, M. Aldén, M. Richter, Z. Li. Stereoscopic high-speed imaging of iron microexplosions and nanoparticle-release. Opt. Express, 29, 34465-34476(2021).

    [27] Y. Tang, C. Kong, Y. Zong, S. Li, J. Zhuo, Q. Yao. Combustion of aluminum nanoparticle agglomerates: from mild oxidation to microexplosion. Proc. Combust. Inst., 36, 2325-2332(2017).

    [28] M. Uddi, N. Jiang, E. Mintusov, I. V. Adamovich, W. R. Lempert. Atomic oxygen measurements in air and air/fuel nanosecond pulse discharges by two photon laser induced fluorescence. Proc. Combust. Inst., 32, 929-936(2009).

    [29] G. D. Stancu, F. Kaddouri, D. A. Lacoste, C. O. Laux. Atmospheric pressure plasma diagnostics by OES, CRDS and TALIF. J. Phys. D, 43, 124002(2010).

    [30] S. Wang, J. Kang, Z. Guo, T. Lee, X. Zhang, Q. Wang, C. Deng, J. Mi. In situ high speed imaging study and modelling of the fatigue fragmentation of dendritic structures in ultrasonic fields. Acta Mater., 165, 388-397(2019).

    [31] A. van der Bos, M.-J. van der Meulen, T. Driessen, M. van den Berg, H. Reinten, H. Wijshoff, M. Versluis, D. Lohse. Velocity profile inside piezoacoustic inkjet droplets in flight: comparison between experiment and numerical simulation. Phys. Rev. Appl., 1, 014004(2014).

    [32] J. J. Philo, M. D. Frederick, C. D. Slabaugh. 100 kHz PIV in a liquid-fueled gas turbine swirl combustor at 1 MPa. Proc. Combust. Inst., 38, 1571-1578(2021).

    [33] A. Ehn, J. Bood, Z. Li, E. Berrocal, M. Aldén, E. Kristensson. Frame: femtosecond videography for atomic and molecular dynamics. Light Sci. Appl., 6, e17045(2017).

    [34] S. Ek, V. Kornienko, E. Kristensson. Long sequence single-exposure videography using spatially modulated illumination. Sci. Rep., 10, 18920(2020).

    [35] Y. N. Mishra, E. Kristensson, M. Koegl, J. Jonsson, L. Zigan, E. Berrocal. Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays. Exp. Fluids, 58, 110(2017).

    [36] D. Sedarsky, J. Gord, C. Carter, T. Meyer, M. Linne. Fast-framing ballistic imaging of velocity in an aerated spray. Opt. Lett., 34, 2748-2750(2009).

    [37] J. Fielding, M. B. Long, G. Fielding, M. Komiyama. Systematic errors in optical-flow velocimetry for turbulent flows and flames. Appl. Opt., 40, 757-764(2001).

    [38] D. Sedarsky, M. Rahm, M. Linne. Visualization of acceleration in multiphase fluid interactions. Opt. Lett., 41, 1404-1407(2016).

    [39] K. Christensen, R. Adrian. Measurement of instantaneous Eulerian acceleration fields by particle image accelerometry: method and accuracy. Exp. Fluids, 33, 759-769(2002).

    [40] J. Eggers, E. Villermaux. Physics of liquid jets. Rep. Prog. Phys., 71, 036601(2008).

    [41] C. Shao, K. Luo, J. Fan. Detailed numerical simulation of unsteady drag coefficient of deformable droplet. Chem. Eng. J., 308, 619-631(2017).

    [42] I. Silverman, W. Sirignano. Multi-droplet interaction effects in dense sprays. Int. J. Multiph. Flow, 20, 99-116(1994).

    [43] T. Etoh, A. Nguyen, Y. Kamakura, K. Shimonomura, T. Le, N. Mori. The theoretical highest frame rate of silicon image sensors. Sensors, 17, 483(2017).

    [44] J. E. Chomas, P. A. Dayton, D. May, J. Allen, A. Klibanov, K. Ferrara. Optical observation of contrast agent destruction. Appl. Phys. Lett., 77, 1056-1058(2000).

    [45] R. Adrian. Twenty years of particle image velocimetry. Exp. Fluids, 39, 159-169(2005).

    [46] T. Kondo, Y. Takemoto, N. Takazawa, M. Tsukimura, H. Saito, H. Kato, J. Aoki, S. Suzuki, Y. Gomi, S. Matsuda, Y. Tadaki. A 3D stacked global-shutter image sensor with pixel-level interconnection technology for high-speed image capturing. Proc. SPIE, 10328, 1032804(2017).

    [47] A. H. Zewail. Femtochemistry: atomic-scale dynamics of the chemical bond. J. Phys. Chem. A, 104, 5660-5694(2000).

    Tools

    Get Citation

    Copy Citation Text

    Vassily Kornienko, David Andersson, Mehdi Stiti, Jonas Ravelid, Simon Ek, Andreas Ehn, Edouard Berrocal, Elias Kristensson, "Simultaneous multiple time scale imaging for kHz–MHz high-speed accelerometry," Photonics Res. 10, 1712 (2022)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation and Measurements

    Received: Dec. 13, 2021

    Accepted: Mar. 29, 2022

    Published Online: Jun. 30, 2022

    The Author Email: Vassily Kornienko (vassily.kornienko@forbrf.lth.se)

    DOI:10.1364/PRJ.451108

    Topics