Journal of the Chinese Ceramic Society, Volume. 50, Issue 6, 1463(2022)
Friction and Wear Characteristics of High Entropy (TiVTaMoW)C Ceramics Sliding Against Different Paired Balls
[3] [3] LIU D Q, ZHANG A J, JIA J G, et al. Phase evolution and properties of (VNbTaMoW)C high entropy carbide prepared by reaction synthesis[J]. J Eur Ceram Soc, 2020, 40(8): 2746-2751.
[4] [4] ZHOU S Y, PU Y P, ZHANG Q W, et al. Microstructure and dielectric properties of high entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 perovskite oxides[J]. Ceram Int, 2020, 46(6): 7430-7437.
[5] [5] WRIGHT A J, WANG Q Y, KO S T, et al. Size disorder as a descriptor for predicting reduced thermal conductivity in medium-and high-entropy pyrochlore oxides[J]. Scripta Mater, 2020, 181: 76-81.
[6] [6] SUN Y N, XIANG H M, DAI F Z, et al. Preparation and properties of CMAS resistant bixbyite structured high-entropy oxides RE2O3 (RE = Sm, Eu, Er, Lu, Y, and Yb): Promising environmental barrier coating materials for Al2O3f/Al2O3 composites[J]. J Adv Ceram, 2021, 10(3): 596-613.
[7] [7] MOSKOVSKIKH D, VOROTILO S, BUINEVICH V, et al. Extremely hard and tough high entropy nitride ceramics[J]. Sci Rep-Uk, 2020, 10(1): 19874.
[8] [8] CHEN T K, SHUN T T, YEH J W, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering[J]. Surf Coat Tech, 2004, 188: 193-200.
[9] [9] GILD J, ZHANG Y, HARRINGTON T, et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics[J]. Sci Rep-Uk, 2016, 6(1): 37946.
[10] [10] TALLARITA G, LICHERI R, GARRONI S, et al. Novel processing route for the fabrication of bulk high-entropy metal diborides[J]. Scripta Mater, 2019, 158: 100-104.
[11] [11] LIU J X, SHEN X Q, WU Y, et al. Mechanical properties of hot-pressed high-entropy diboride-based ceramics[J]. J Adv Ceram, 2020, 9(4): 503-510.
[12] [12] YAN X L, CONSTANTIN L, LU Y F, et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity[J]. J Am Ceram Soc, 2018, 101(10): 4486-4491.
[13] [13] ZHOU J Y, ZHANG J Y, ZHANG F, et al. High-entropy carbide: A novel class of multicomponent ceramics[J]. Ceram Int, 2018, 44(17): 22014-22018.
[14] [14] CASTLE E, CSANADI T, GRASSO S, et al. Processing and properties of high-entropy ultra-high temperature carbides[J]. Sci Rep-Uk, 2018, 8(1): 8609.
[15] [15] XIANG H M, XING Y, DAI F Z, et al. High-entropy ceramics: Present status, challenges, and a look forward[J]. J Adv Ceram, 2021, 10(3): 385-441.
[16] [16] SARKER P, HARRINGTON T, TOHER C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors[J]. Nat Commun, 2018, 9(1): 4980.
[17] [17] WANG F, ZHANG X, YAN X L, et al. The effect of submicron grain size on thermal stability and mechanical properties of high-entropy carbide ceramics[J]. J Am Ceram Soc, 2020, 103(8): 4463-4472.
[18] [18] CHEN H, XIANG H M, DAI F Z, et al. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C[J]. J Mater Sci Technol, 2019, 35(8): 1700-1705.
[19] [19] WEI X F, LIU J X, LI F, et al. High entropy carbide ceramics from different starting materials[J]. J Eur Ceram Soc, 2019, 39(10): 2989-2994.
[20] [20] SUN Y N, CHEN F H, QIU W F, et al. Synthesis of rare earth containing single-phase multicomponent metal carbides via liquid polymer precursor route[J]. J Am Ceram Soc, 2020, 103(11): 6081-6087.
[21] [21] YE B L, WEN T Q, HUANG K H, et al. First-principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic[J]. J Am Ceram Soc, 2019, 102(7): 4344-4352.
[22] [22] DEMIRSKYI D, BORODIANSKA H, SUZUKI T S, et al. High-temperature flexural strength performance of ternary high-entropy carbide consolidated via spark plasma sintering of TaC, ZrC and NbC[J]. Scripta Mater, 2019, 164: 12-16.
[23] [23] YE B L, WEN T Q, LIU D, et al. Oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics at 1073-1473 K in air[J]. Corros Sci, 2019, 153: 327-332.
[24] [24] YANG Y, WANG W, GAN G Y, et al. Structural, mechanical and electronic properties of (TaNbHfTiZr)C high entropy carbide under pressure: Ab initio investigation[J]. Physica B, 2018, 550: 163-170.
[25] [25] SUN Q C, TAN H, ZHU S Y, et al. Single-phase (Hf—Mo—Nb—Ta—Ti)C high-entropy ceramic: A potential high temperature anti-wear material[J]. Tribol Int, 2021, 157.
[26] [26] CHEN H, WU Z H, LIU M L, et al. Synthesis, microstructure and mechanical properties of high-entropy (VNbTaMoW)C5 ceramics[J]. J Eur Ceram Soc, 2021, 41(15): 7498-7506.
[27] [27] ZHANG H, HEDMAN D, FENG P, et al. A high-entropy B4(HfMo2TaTi)C and SiC ceramic composite[J]. Dalton T, 2019, 48(16): 5161-5167.
[28] [28] YU X X, THOMPSON G B, WEINBERGER C R. Influence of carbon vacancy formation on the elastic constants and hardening mechanisms in transition metal carbides[J]. J Eur Ceram Soc, 2015, 35(1): 95-103.
[29] [29] BURR P A, OLIVER S X. Formation and migration of point defects in tungsten carbide: Unveiling the sluggish bulk self-diffusivity of WC[J]. J Eur Ceram Soc, 2019, 39(2-3): 165-172.
[30] [30] FANG Y, ZHANG Y S, FAN H Z, et al. Surface composition- lubrication design of Al2O3/Mo laminated composites-Part I: Influence of laser surface texturing on the tribological behavior at 25 and 800 degrees C[J]. Wear, 2015, 334: 23-34.
Get Citation
Copy Citation Text
LI Jicheng, CHEN Shuna, SUN Qiuan, FAN Hengzhong, SU Yunfeng, SONG Junjie, HU Litian, ZHANG Yongsheng. Friction and Wear Characteristics of High Entropy (TiVTaMoW)C Ceramics Sliding Against Different Paired Balls[J]. Journal of the Chinese Ceramic Society, 2022, 50(6): 1463
Special Issue:
Received: Jan. 17, 2022
Accepted: --
Published Online: Dec. 6, 2022
The Author Email: Jicheng LI (lijc@licp.cas.cn)
CSTR:32186.14.