Journal of Applied Optics, Volume. 45, Issue 2, 249(2024)
Review of phase aberration correction technology of digital holographic microscopy
[1] J M FLORES-MORENO, M D L TORRE-IBARRA, M D S HERNANDEZ-MONTES et al. DHI contemporary methodologies: a review and frontiers. Optics and Lasers in Engineering, 135, 106184(2020).
[2] Y PARK, C DEPEURSINGE, G POPESCU. Quantitative phase imaging in biomedicine. Nature Photonics, 12, 578-589(2018).
[3] S A YANG, J YOON, K KIM et al. Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson's disease. Cytometry Part A, 91, 510-518(2017).
[4] P FERRARO, L MICCIO, S GRILLI et al. Quantitative phase microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography. Optics Express, 15, 14591-14600(2007).
[5] F VERPILLAT, F JOUD, P DESBIOLLES et al. Dark-field digital holographic microscopy for 3D-tracking of gold nanoparticles. Optics Express, 19, 26044-26055(2011).
[6] C D SMITH, T M BIEWER, T E GEBHART et al. Measurements of dynamic surface changes by digital holography for in situ plasma erosion applications. Review of Scientific Instruments, 92, 033504(2021).
[7] N PAVILLON, A BENKE, D BOSS et al. Cell morphology and intracellular ionic homeostasis explored with a multimodal approach combining epifluorescence and digital holographic microscopy. Journal of Biophotonics, 3, 432-436(2010).
[8] C ZUO, Q CHEN, W QU et al. Phase aberration compensation in digital holographic microscopy based on principal component analysis. Optics Letters, 38, 1724-1726(2013).
[9] S WANG, Y ZHAO, S LI. Research of aerial camera focal pane micro-displacement measurement system based on Michelson interferometer, 552-558.
[10] Shaohui SHI, Shunzhen FENG, Ping NIU et al. Research and simulation of wavelength measurement experiment using Michelson interference. College Physics, 38, 24-28(2019).
[11] J ZHANG, H SUN, R WANG et al. Simultaneous measurement of refractive index and temperature using a michelson fiber interferometer with a hi-bi fiber probe. IEEE Sensors Journal, 13, 2061-2065(2013).
[12] V KATKOVNIK, I A SHEVKUNOV, N V PETROV et al. Wavefront reconstruction in digital off-axis holography via sparse coding of amplitude and absolute phase. Optics Letters, 40, 2417-2420(2015).
[13] D DENG, J PENG, W QU et al. Simple and flexible phase compensation for digital holographic microscopy with electrically tunable lens. Applied Optics, 56, 6007-6014(2017).
[14] T ZHANG, I YAMAGUCHI. Three-dimensional microscopy with phase-shifting digital holography. Optics Letters, 23, 1221-1223(1998).
[15] T TAHARA, K ITO, T KAKUE et al. Parallel phase-shifting digital holographic microscopy. Biomed Opt Express, 1, 610-616(2010).
[16] E CUCHE, P MARQUET, C DEPEURSINGE. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Applied Optics, 39, 4070-4075(2000).
[17] E CUCHE, C DEPEURSINGE, P MARQUET. Spatial filtering and aperture apodization in digital holographic microscopy, 411-413(2000).
[18] N T SHAKED, Y ZHU, M T RINEHART et al. Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells. Optics Express, 17, 15585-15591(2009).
[19] L HUANG, L YAN, B CHEN et al. Phase aberration compensation of digital holographic microscopy with curve fitting preprocessing and automatic background segmentation for microstructure testing. Optics Communications, 462, 125311(2020).
[20] Y LIU, Z WANG, J HUANG. Recent progress on aberration compensation and coherent noise suppression in digital holography, 8, 444(2018).
[21] J MIN, B YAO, P GAO et al. Wave-front curvature compensation of polarization phase-shifting digital holography. Optik, 123, 1525-1529(2012).
[22] G WANG, H WANG, J ZHAO et al. Automatic compensation for phase aberration in digital holographic microscopy. SPIE, 6832, 277-285(2008).
[23] D MALACARA. Optical shop testing, 498-546(2007).
[24] V LAKSHMINARAYANAN, A FLECK. Zernike polynomials: a guide. Journal of Modern Optics, 58, 545-561(2011).
[25] F LIU, B ROBINSON, P REARDON et al. Analyzing optics test data on rectangular apertures using 2-D Chebyshev polynomials. Optical Engineering, 50, 043609(2011).
[26] Z YANG, Z LIU, W HE et al. Automatic high order aberrations correction for digital holographic microscopy based on orthonormal polynomials fitting over irregular shaped aperture. Journal of Optics, 21, 045609(2019).
[27] P FERRARO, NICOLA S DE, A FINIZIO et al. Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging. Applied Optics, 42, 1938-1946(2003).
[28] L PENSIA, G DWIVEDI, O SINGH, al ET. Crack detection in tableware items using digital holography interferometry, DTu6H. 8(2021).
[29] A DOBLAS, D HINCAPIE-ZULUAGA, G SAAVEDRA et al. Physical compensation of phase curvature in digital holographic microscopy by use of programmable liquid lens. Applied Optics, 54, 5229-5233(2015).
[30] A DOBLAS, E SÁNCHEZ-ORTIGA, M MARTÍNEZ-CORRAL et al. Shift-variant digital holographic microscopy: inaccuracies in quantitative phase imaging. Optics Letters, 38, 1352-1354(2013).
[31] E SáNCHEZ-ORTIGA, A DOBLAS, G SAAVEDRA et al. Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit. Applied Optics, 53, 2058-2066(2014).
[32] G POPESCU, T IKEDA, R R DASARI et al. Diffraction phase microscopy for quantifying cell structure and dynamics. Opt Lett, 31, 775-777(2006).
[33] J DI, K WANG, J ZHANG et al. Quasicommon-path digital holographic microscopy with phase aberration compensation based on a long-working distance objective. Optical Engineering, 57, 024108(2018).
[34] R GUO, B YAO, P GAO et al. Reflective point-dif fraction microscopic interferometer with long-term stability (invited paper). Chinese Optics Letters, 9, 120002(2011).
[35] V CHHANIWAL, A S G SINGH, R A LEITGEB et al. Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror. Optics Letters, 37, 5127-5129(2012).
[36] C MA, Y LI, J ZHANG et al. Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer. Optics Express, 25, 13659-13667(2017).
[37] C ZHENG, R ZHOU, C KUANG et al. Digital micromirror device-based common-path quantitative phase imaging. Optics Letters, 42, 1448-1451(2017).
[38] Y LIU, Z WANG, J LI et al. Phase based method for location of the centers of side bands in spatial frequency domain in off-axis digital holographic microcopy. Optics and Lasers in Engineering, 86, 115-124(2016).
[39] J LI, Z WANG, J GAO et al. Adaptive spatial filtering based on region growing for automatic analysis in digital holographic microscopy. Optical Engineering, 54, 031103(2014).
[40] Y DU, G FENG, H LI et al. Accurate carrier-removal technique based on zero padding in Fourier transform method for carrier interferogram analysis. Optik, 125, 1056-1061(2014).
[41] Chao ZUO. A tilt aberration correction and compensation method based on spectral sub-pixel translation.
[42] X ZHANG, J SUN, Z ZHANG et al. Multi-step phase aberration compensation method based on optimal principal component analysis and subsampling for digital holographic microscopy. Applied Optics, 58, 389-397(2019).
[43] X LAI, S XIAO, C XU et al. Aberration-free digital holographic phase imaging using the derivative-based principal component analysis. Journal of Biomedical Optics, 26, 046501(2021).
[44] T COLOMB, E CUCHE, F CHARRIèRE et al. Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation. Applied Optics, 45, 851-863(2006).
[45] J DI, J ZHAO, W SUN et al. Phase aberration compensation of digital holographic microscopy based on least squares surface fitting. Optics Communications, 282, 3873-3877(2009).
[46] T COLOMB, F MONTFORT, J KüHN et al. Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy. Journal of the Optical Society of America A, 23, 3177-3190(2006).
[47] S LIU, Q LIAN, Y QING et al. Automatic phase aberration compensation for digital holographic microscopy based on phase variation minimization. Optics Letters, 43, 1870-1873(2018).
[48] J ÖHMAN, M SJÖDAHL. Improved particle position accuracy from off-axis holograms using a Chebyshev model. Applied Optics, 57, A157-A163(2018).
[49] T NGUYEN, V BUI, V LAM et al. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection. Optics Express, 25, 15043-15057(2017).
[50] S MA, R FANG, Y LUO et al. Phase-aberration compensation via deep learning in digital holographic microscopy. Measurement Science and Technology, 32, 105203(2021).
[51] W XIAO, L XIN, R CAO et al. Sensing morphogenesis of bone cells under microfluidic shear stress by holographic microscopy and automatic aberration compensation with deep learning. Lab on a Chip, 21, 1385-1394(2021).
Get Citation
Copy Citation Text
Weilin HE, Zhongming YANG, Xingyu ZHANG, Zhaojun LIU. Review of phase aberration correction technology of digital holographic microscopy[J]. Journal of Applied Optics, 2024, 45(2): 249
Category: Research Articles
Received: Apr. 26, 2023
Accepted: --
Published Online: May. 28, 2024
The Author Email: YANG Zhongming (杨忠明(1987—))