Acta Photonica Sinica, Volume. 39, Issue 9, 1658(2010)
Remote Sensing Image Denoising Algorithm Based on Fusion Theory Using Cycle Spinning Contourlet Transform and Total Variation Minimization
[1] [1] PENNEC E, MALLAT S. Sparse geometric image representation with bandelets[J]. IEEE Trans on Image Processing, 2005, 14(4): 423-438.
[2] [2] DO M N, VETTERLI M. The contourlet transform: an efficient directional multiresolution image representation[J]. IEEE Trans on Image Processing, 2005, 14(12):2091-2106.
[3] [3] DO M N, VETTERLI M. Contourlet beyond wavelets[M].WELLAND G V, ed.New York: Academic Press, 2003.
[4] [4] STARCK J, CANDèS E J, DONOHO D L. The curvelet transform for image denoising[J]. IEEE Trans on Image Processing, 2002, 11(6): 670-684.
[5] [5] JIN Wei, WEI Biao, PAN Ying-jun, et al. A novel method of neutron radiography image denoising using contourlet transform[J], Acta Photonica Sinica, 2006, 35(5):760-765.
[6] [6] MIAO Qi-guang, WANG Bao-shu. A novel image fusion method using contourlet transform[C].International Conference on Communication, Circuits and System Processing, 2006, 1: 548-552.
[7] [7] FENG Peng, PAN Ying-jun, WEI Biao, et al. Enhancing retinal image by the Contourlet transform[J]. Pattern Recognition Letters, 2007, 28(4): 516-522.
[8] [8] XIANG Jing-bo, SU Xiu-qin, LU Tao. Image enhancement based on the contourlet transform and mathematical morphology[J]. Acta Photonica Sinica, 2009, 38(1): 224-227.
[9] [9] WU Yi-quan, XIE Jing, PANG Lei. Multipurpose watermarking algorithm based on krawtchouk moment and contourlet transform[J]. Acta Photonica Sinica, 2009, 38(8): 2160-2164.
[10] [10] COIFMAN R R, DONOHO D L. Translation invariant de-noising, wavelets and statistics[M]. ANTONIADIS A, Oppenheim G, ed. New York: Springer-Verlag, 1994: 125-150.
[11] [11] TAN Li-na, GAO Xie-ping, HE Sheng-ming, et al. Study of MRI denoising based on TI multiwavelet thresholding[J]. Acta Photonica Sinica, 2007, 36(8):1552-1556.
[12] [12] ESLAMI R, RADHA H. The contourlet transform for image denoising using cyclic spinning[C]. Proc of Asilomar Conference on Signals, Systems and Computers, IEEE, 2003, 2: 1982-1986.
[13] [13] RUDIN L, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D, 1992, 60(1-4): 259-268.
[14] [14] GHITA O, ILEA E, WHELAN F. Image feature enhancement based on the time-controlled total variation flow formulation[J]. Pattern Recognition Letters, 2009, 30(3): 314-320.
[15] [15] YIN W, GOLDFARB D, OSHER S. A comparison of three total variation based texture extraction models[J]. Journal of Visual Communication and Image Representation, 2007, 18(3): 240-252.
[16] [16] LIANG D, LI Y, SHEN M. An algorithm for multi-focus image fusion using wavelet based contourlet transform[J]. Acta Electronica Sinica, 2007, 35(2): 320-322.
[17] [17] CAI Xi, ZHAO Wei. Discussion upon effects of contourlet lowpass filter on contourlet-based image fusion algorithms[J]. Acta Electronica Sinica, 2009, 35(3): 258-265.
Get Citation
Copy Citation Text
ZHAO Jie, YANG Jian-lei. Remote Sensing Image Denoising Algorithm Based on Fusion Theory Using Cycle Spinning Contourlet Transform and Total Variation Minimization[J]. Acta Photonica Sinica, 2010, 39(9): 1658
Received: Dec. 23, 2009
Accepted: --
Published Online: Nov. 4, 2010
The Author Email: Jie ZHAO (jiezhaohbu@126.com)
CSTR:32186.14.