Acta Photonica Sinica, Volume. 52, Issue 5, 0552221(2023)

Supercontinuum Spectroscopy of Thin Film Lithium Niobate Waveguide Based on Modulated Optical Frequency Comb

Yi HUANG, Kan WU*, Zeyu XIAO, Tieying LI, Minglu CAI, and Jianping CHEN
Author Affiliations
  • State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    References(24)

    [1] N PICQUÉ, T W HÄNSCH. Frequency comb spectroscopy. Nature Photonics, 13, 146-157(2019).

    [2] Z L NEWMAN, V MAURICE, T DRAKE et al. Architecture for the photonic integration of an optical atomic clock. Optica, 6, 680-685(2019).

    [3] V TORRES-COMPANY, J SCHRÖDER, A FÜLÖP et al. Laser frequency combs for coherent optical communications. Journal of Lightwave Technology, 37, 1663-1670(2019).

    [4] V TORRES-COMPANY, A M WEINER. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser & Photonics Reviews, 8, 368-393(2014).

    [5] L E HARGROVE, R FORK, M A POLLACK. Locking of He-Ne laser modes induced by synchronous intracavity modulation. Applied Physics Letters, 5, 4-5(1964).

    [6] A PARRIAUX, K HAMMANI, G MILLOT. Electro-optic frequency combs. Advances in Optics and Photonics, 12, 223-287(2020).

    [7] P DEL′HAYE, A SCHLIESSER, O ARCIZET et al. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [8] Y K CHEMBO. Kerr optical frequency combs: theory, applications and perspectives. Nanophotonics, 5, 214-230(2016).

    [9] M KOUROGI, K NAKAGAWA, M OHTSU. Wide-span optical frequency comb generator for accurate optical frequency difference measurement. IEEE Journal of Quantum Electronics, 29, 2693-2701(1993).

    [10] S XIAO, L HOLLBERG, N R NEWBURY et al. Toward a low-jitter 10 GHz pulsed source with an optical frequency comb generator. Optics Express, 16, 8498-8508(2008).

    [11] M YU, C REIMER, D BARTON et al. Femtosecond pulse generation via an integrated electro-optic time lens.

    [12] A KLENNER, A S MAYER, A R JOHNSON et al. Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides. Optics Express, 24, 11043-11053(2016).

    [13] D WALDBURGER, A S MAYER, C G E ALFIERI et al. Tightly locked optical frequency comb from a semiconductor disk laser. Optics Express, 27, 1786-1797(2019).

    [14] M A G PORCEL, F SCHEPERS, J P EPPING et al. Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths. Optics Express, 25, 1542-1554(2017).

    [15] D D HICKSTEIN, D R CARLSON, H MUNDOOR et al. Self-organized nonlinear gratings for ultrafast nanophotonics. Nature Photonics, 13, 494-499(2019).

    [16] D D HICKSTEIN, H JUNG, D R CARLSON et al. Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities. Physical Review Applied, 8, 014025(2017).

    [17] C WANG, M ZHANG, M YU et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nature Communications, 10, 978(2019).

    [18] C WANG, C LANGROCK, A MARANDI et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 5, 1438-1441(2018).

    [19] M YU, B DESIATOV, Y OKAWACHI et al. Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides. Optics Letters, 44, 1222-15225(2019).

    [20] J LU, J B SURYA, X LIU et al. Octave-spanning supercontinuum generation in nanoscale lithium niobate waveguides. Optics Letters, 44, 1492-1495(2019).

    [21] I SHOJI, T KONDO, A KITAMOTO et al. Absolute scale of second-order nonlinear-optical coefficients. Journal of the Optical Society of America B-optical Physics, 14, 2268-2294(1997).

    [22] F BARONIO, M CONFORTI, C DE ANGELIS et al. Second and third order susceptibilities mixing for supercontinuum generation and shaping. Optical Fiber Technology, 18, 283-289(2012).

    [23] Y OKAWACHI, M YU, B DESIATOV et al. Chip-based self-referencing using integrated lithium niobate waveguides. Optica, 7, 702-707(2020).

    [24] J M DUDLEY, G GENTY, S COEN. Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics, 78, 1135-1184(2006).

    Tools

    Get Citation

    Copy Citation Text

    Yi HUANG, Kan WU, Zeyu XIAO, Tieying LI, Minglu CAI, Jianping CHEN. Supercontinuum Spectroscopy of Thin Film Lithium Niobate Waveguide Based on Modulated Optical Frequency Comb[J]. Acta Photonica Sinica, 2023, 52(5): 0552221

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue for Advanced Science and Technology of Astronomical Optics

    Received: Nov. 21, 2022

    Accepted: Jan. 30, 2023

    Published Online: Jul. 19, 2023

    The Author Email: WU Kan (kanwu@sjtu.edu.cn)

    DOI:10.3788/gzxb20235205.0552221

    Topics