Infrared and Laser Engineering, Volume. 51, Issue 6, 20220127(2022)
Research progress of high-power single-frequency erbium-doped fiber laser technology (Invited)
[1] Bellemare A. Continuous-wave silica-based erbium-doped fiber lasers[J]. Progress in Quantum Electronics, 27, 211-266(2003).
[2] Wagener J L, Wysocki P F, Digonnet M J F, et al. Effects of concentration and clusters in erbium-doped fiber lasers[J]. Optics Letters, 18, 2014-2016(1993).
[3] [3] Yang Z, Li C, Xu S, et al. SingleFrequency Fiber Lasers[M]. Singape: Springer Nature, 2019.
[4] Morkel P R, Cowle G J, Payne D N. Travelling-wave erbium fiber ring laser with 60 kHz linewidth[J]. Electronics Letters, 26, 632-634(1990).
[5] Iwatsuki K, Okamura H, Saruwatari M. Wavelength-tunable single-frequency and single-polarisation Er-doped fiber ring-laser with 1.4 kHz linewidth[J]. Electronics Letters, 26, 2033-2035(1990).
[6] Smith D A, Maeda M W, Johnson J J, et al. Acoustically tuned erbium-doped fiber ring laser[J]. Optics Letters, 16, 387-389(1991).
[7] Schmuck H, Pfeiffer T, Veith G. Widely tunable narrow linewidth erbium doped fiber ring laser[J]. Electronics Letters, 27, 2117-2119(1991).
[8] Zyskind J L, Sulhoff J W, Sun Y, et al. Singlemode diode-pumped tunable erbium-doped fiber laser with linewidth less than 5.5 kHz[J]. Electronics Letters, 27, 2148-2149(1991).
[9] Cheng Y, Kringlebotn J T, Loh W H, et al. Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter[J]. Optics Letters, 20, 875-877(1995).
[10] Song Y W, Havstad S A, Starodubov D, et al. 40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG[J]. IEEE Photonics Technology Letters, 13, 1167-1169(2001).
[11] Chen H X, Babin F, Leblanc M, et al. Widely tunable single-frequency erbium-doped fiber lasers[J]. IEEE Photonics Technology Letters, 15, 185-187(2003).
[12] Chien H C, Yeh C H, Lee C C, et al. A tunable and single-frequency s-band erbium fiber laser with saturable-absorber-based autotracking filter[J]. Optics Communications, 250, 163-167(2005).
[13] Yeh C H, Lin M C, Chi S. Stabilized and wavelength-tunable s-band erbium-doped fiber ring laser with single-longitudinal-mode operation[J]. Optics Express, 13, 6828-6832(2005).
[14] Polynkin A, Polynkin P, Mansuripur M, et al. Single-frequency fiber ring laser with 1 W output power at 1.5 µm[J]. Optics Express, 13, 3179-3184(2005).
[15] Yang X X, Zhan L, Shen Q S, et al. High-power single-longitudinal-mode fiber laser with a ring Fabry-Perot resonator and a saturable absorber[J]. IEEE Photonics Technology Letters, 20, 879-881(2008).
[16] Zhang J L, Yue C Y, Schinn G W, et al. Stable single-mode compound-ring erbium-doped fiber laser[J]. Journal of Lightwave Technology, 14, 104-109(1996).
[17] Lee C C, Chi S. Single-longitudinal-mode operation of a grating-based fiber-ring laser using self-injection feedback[J]. Optics Letters, 25, 1774-1776(2000).
[18] Lee C C, Chen Y K, Liaw S K. Single-longitudinal-mode fiber laser with a passive multiple-ring cavity and its application for video transmission[J]. Optics Letters, 23, 358-360(1998).
[19] Xin Z, Ning Hua Z, Liang X, et al. Stabilized and tunable single-frequency erbium-doped fiber ring laser employing external injection locking[J]. Journal of Lightwave Technology, 25, 1027-1033(2007).
[20] Yeh C H, Huang T T, Chien H C, et al. Tunable S-band erbium-doped triple-ring laser with single-longitudinal-mode operation[J]. Optics Express, 15, 382-386(2007).
[21] Pan S, Yao J. A Wavelength-tunable single-longitudinal-mode fiber ring laser with a large sidemode suppression and improved stability[J]. IEEE Photonics Technology Letters, 22, 413-415(2010).
[22] Salehiomran A, Rochette M. An all-pole-type cavity based on smith predictor to achieve single longitudinal mode fiber lasers[J]. IEEE Photonics Technology Letters, 25, 2141-2144(2013).
[23] Feng T, Yan F, Peng W, . et al. A high stability wavelength-tunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure[J]. Laser Physics Letters, 11, 045101(2014).
[24] Yang C, Cen X, Xu S, et al. Research progress of single-frequency fiber laser[J]. Acta Optica Sinica, 41, 0114002(2021).
[25] Yang C, Xu S, Li C, et al. Research progress of 1.5 μm-band CW single-frequency fiber laser[J]. Scientia Sinica Chimica, 43, 1407-1417(2013).
[26] Fu S J, Shi W, Feng Y, et al. Review of recent progress on single-frequency fiber lasers invited[J]. Journal of the Optical Society of America B-Optical Physics, 34, A49-A62(2017).
[27] Lai W, Ma P, Xiao H, et al. High-power narrow-linewidth fiber laser technology[J]. High Power Laser and Particle Beams, 32, 121001(2020).
[28] Ball G A, Morey W W, Glenn W H. Standing-wave monomode erbium fiber laser[J]. IEEE Photonics Technology Letters, 3, 613-615(1991).
[29] Ball G A, Morey W W. Compression-tuned single-frequency Bragg grating fiber laser[J]. Optics Letters, 19, 1979-1981(1994).
[30] Zhang Y N, Zhang Y F, Zhao Q L, et al. Ultra-narrow linewidth full C-band tunable single-frequency linear-polarization fiber laser[J]. Optics Express, 24, 26209-26214(2016).
[31] Yang C S, Guan X C, Lin W, et al. Efficient 1.6 μm linearly-polarized single-frequency phosphate glass fiber laser[J]. Optics Express, 25, 29078-29085(2017).
[32] [32] Spiegelberg C, Geng J, Hu Y, et al. Compact 100 mW fiber laser with 2 kHz linewidth [C] Optical Fiber Communications Conference, 2003, 3: PD45P1.
[33] Spiegelberg C, Geng J H, Hu Y D, et al. Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003)[J]. Journal of Lightwave Technology, 22, 57-62(2004).
[34] Polynkin P, Polynkin A, Mansuripur M, et al. Single-frequency laser oscillator with watts-level output power at 1.5 μm by use of a twisted-mode technique[J]. Optics Letters, 30, 2745-2747(2005).
[35] Qiu T, Suzuki S, Schulzgen A, et al. Generation of watt-level single-longitudinal-mode output from cladding-pumped short fiber lasers[J]. Optics Letters, 30, 2748-2750(2005).
[36] Schulzgen A, Li L, Temyanko V L, et al. Single-frequency fiber oscillator with watt-level output power using photonic crystal phosphate glass fiber[J]. Optics Express, 14, 7087-7092(2006).
[37] Pan Z, Cai H, Meng L, et al. Single-frequency phosphate glass fiber laser with 100-mw output power at 1535 nm and its polarization characteristics[J]. Chinese Optics Letters, 8, 52-54(2010).
[38] Xu S H, Yang Z M, Liu T, et al. An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 μm[J]. Optics Express, 18, 1249-1254(2010).
[39] Chang S H, Hwang I K, Kim B Y, et al. Widely tunable single-frequency Er-doped fiber laser with long linear cavity[J]. IEEE Photonics Technology Letters, 13, 287-289(2001).
[40] [40] Kaneda Y, Hu Y, Spiegelberg C, et al. Singlefrequency, allfiber Qswitched laser at 1550 nm[C] Proceedings of the Advanced SolidState Photonics (TOPS), 2004.
[41] Zhou R, Shi W, Petersen E, et al. Transform-limited, injection seeded, Q-switched, ring cavity fiber laser[J]. Journal of Lightwave Technology, 30, 2589-2595(2012).
[42] Wan H D, Wu Z W, Sun X H. A pulsed single-longitudinal-mode fiber laser based on gain control of pulse-injection-locked cavity[J]. Optics Laser Technology, 48, 167-170(2013).
[43] Shi W, Leigh M A, Zong J, et al. High-power all-fiber-based narrow-linewidth single-mode fiber laser pulses in The C-Band and frequency conversion to THz generation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 377-384(2009).
[44] Leigh M, Shi W, Zong J, et al. High peak power single frequency pulses using a short polarization-maintaining phosphate glass fiber with a large core[J]. Applied Physics Letters, 92, 1-3(2008).
[45] Shi W, Petersen E B, Leigh M, et al. High SBS-threshold single-mode single-frequency monolithic pulsed fiber laser in the C-band[J]. Opt Express, 17, 8237-8245(2009).
[46] Shi W, Petersen E B, Yao Z D, et al. Kilowatt-level stimulated-Brillouin-scattering-threshold monolithic transform-limited 100 ns pulsed fiber laser at 1530 nm[J]. Optics Letters, 35, 2418-2420(2010).
[47] Petersen E, Shi W, Chavez-pirson A, et al. High peak-power single-frequency pulses using multiple stage, large core phosphate fibers and preshaped pulses[J]. Applied Optics, 51, 531-534(2012).
[48] Liu Y, Liu J Q, Chen W B. Eye-safe, single-frequency pulsed all-fiber laser for Doppler wind lidar[J]. Chinese Optics Letters, 9, 090604(2011).
[49] Lee W, Geng J, Jiang S, et al. 1.8 mJ, 3.5 kW single-frequency optica pulses at 1572 nm generated from an all-fiber MOPA system[J]. Optics Letters, 43, 2264-2267(2018).
[50] Zhang X, Diao W F, Liu Y, et al. Eye-safe single-frequency single-mode polarized all-fiber pulsed laser with peak power of 361 W[J]. Applied Optics, 53, 2465-2469(2014).
[51] Ball G A, Holton C E, Hullallen G, et al. 60-mW 1.5 μm single-frequency low-noise fiber laser MOPA[J]. IEEE Photonics Technology Letters, 6, 192-194(1994).
[52] Pan J J, Shi Y. 166-mW single-frequency output power interactive fiber lasers with low noise[J]. IEEE Photonics Technology Letters, 11, 36-38(1999).
[53] Jeong Y, Salm J K, Richardson D J, et al. Seeded erbium/ytterbium codoped fiber amplifier source with 87 W of single-frequency output power[J]. Electronics Letters, 39, 1717-1719(2003).
[54] [54] Alam S U, Wixey R, Hickey L, et al. High power, singlemode, singlefrequency DFB fiber laser at 1550 nm in MOPA configuration[C]Proceedings of the Conference on Lasers ElectroOptics, 2004 (CLEO), F, 2004.
[55] Alegria C, Jeong Y, Codemard C, et al. 83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium co-doped fiber[J]. IEEE Photonics Technology Letters, 16, 1825-1827(2004).
[56] Jeong Y, Sahu J K, Soh D B S, et al. High-power tunable single-frequency single-mode erbium: ytterbium codoped large-core fiber master-oscillator power amplifier source[J]. Optics Letters, 30, 2997-2999(2005).
[57] Dubinskii M, Zhang J, Kudryashov I. Single-frequency, Yb-free, resonantly cladding-pumped large mode area Er fiber amplifier for power scaling[J]. Applied Physics Letters, 93, 1-3(2008).
[58] Yang C S, Xu S H, Mo S P, et al. 10.9 W kHz-linewidth one-stage all-fiber linearly-polarized MOPA Laser at 1560 nm[J]. Optics Express, 21, 12546-12551(2013).
[59] Steinke M, Croteau A, Pare C, et al. Co-seeded Er3+: Yb3+ single frequency fiber amplifier with 60 w output power and over 90% TEM00 content[J]. Optics Express, 22, 16722-16730(2014).
[60] Bai X L, Sheng Q, Zhang H W, et al. High-power all-fiber single-frequency erbium-ytterbium co-doped fiber master oscillator power amplifier[J]. IEEE Photonics Journal, 7, 6(2015).
[61] [61] Creeden D, Pretius H, Limongelli J, et al. Single frequency 1560 nm Er: Yb fiber amplifier with 207 W output power 50.5% slope efficiency[C]Proceedings of the Conference on Fiber Lasers XIII Technology, Systems, Applications, F, 2016.
[62] De Varona O, Fittkau W, Booker P, et al. Single-frequency fiber amplifier at 1.5 μm with 100 W in the linearly-polarized TEM00 Mode for next-generation gravitational wave detectors[J]. Optics Express, 25, 24880-24892(2017).
[63] Yang C S, Guan X C, Zhao Q L, et al. 15 W high OSNR kHz-linewidth linearly-polarized all-fiber single-frequency MOPA a 1.6 μm[J]. Optics Express, 26, 12863-12869(2018).
[64] Guan X C, Zhao Q L, Lin W, et al. High-efficiency and high-power single-frequency fiber laser at 1.6 μm based on cascaded energy-transfer pumping[J]. Photonics Research, 8, 414-420(2020).
[65] Xue M Y, Gao C X, Niu L Q, et al. A 51.3 W, sub-kHz-linewidth linearly polarized all-fiber laser at 1560 nm[J]. Laser Physics, 30, 035104(2020).
[66] Darwich D, Bardin Y V, Goeppner M, et al. Ultralow-intensity noise, 10 W all-fiber single-frequency tunable laser system around 1550 nm[J]. Applied Optics, 60, 8550-8555(2021).
[67] [67] Kuhn V, Kracht D, Neumann J, et al. Erdoped singlefrequency photonic crystal fiber amplifier with 70 W of output power f gravitational wave detection[C]Proceedings of the Conference on Fiber Lasers IX Technology, Systems, Applications, 2012.
[68] Fujisaki A, Matsushita S, Kasai K, et al. An 11.6 W output, 6 kHz linewidth, single-polarization EDFA-MOPA system with a 13C2H2 frequency stabilized fiber laser[J]. Optics Express, 23, 1081-1087(2015).
[69] Dong J Y, Zeng X, Cui S Z, et al. More than 20 W fiber-based continuous-wave single frequency laser at 780 nm[J]. Optics Express, 27, 35362-35367(2019).
[70] [70] Alam S, Ylajarkko K H, Grudinin A B. High power, single frequency DFB fiber laser with low relative intensity noise[C] Proceedings of the 2003 Conference on Lasers ElectroOptics Europe (CLEOEurope 2003) (IEEE Cat No03 TH8666), 2003: 618.
[71] De Varona O, Steinke M, Neumann J, et al. All-fiber, single-frequency, and single-mode Er3+:Yb3+ fiber amplifier at 1556 nm core-pumped at 1018 nm[J]. Optics Letters, 43, 2632-2635(2018).
[72] Wang S, Liu Z, Zhao Z, et al. 18 W Single-frequency 1550 nm Er: Yb co-doped fiber amplifier cladding-pumping at 1018 nm[J]. Optics Communications, 464, 125498(2020).
[73] Kuhn V, Kracht D, Neumann J, et al. Dependence of Er: Yb-codoped 1.5 μm amplifier on wavelength-tuned auxiliary seed signal at 1 μm wavelength[J]. Optics Letters, 35, 4105-4107(2010).
[74] Sobon G, Sliwinska D, Kaczmarek P, et al. Er/Yb co-doped fiber amplifier with wavelength-tuned Yb-band ring resonator[J]. Optics Communications, 285, 3816-3819(2012).
[75] Dubinskii M, Zhang J, Ter-mikirtychev V. Record-efficient, resonantly-pumped, Er-doped single mode fiber amplifier[J]. Electronics Letters, 45, 400-401(2009).
[76] Supradeepa V R, Nicholson J W. Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers[J]. Optics Letters, 38, 2538-2541(2013).
Get Citation
Copy Citation Text
Xin Cheng, Huawei Jiang, Yan Feng. Research progress of high-power single-frequency erbium-doped fiber laser technology (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20220127
Category:
Received: Feb. 24, 2022
Accepted: --
Published Online: Dec. 20, 2022
The Author Email: