Optics and Precision Engineering, Volume. 31, Issue 20, 2993(2023)

Indoor self-supervised monocular depth estimation based on level feature fusion

Deqiang CHENG1... Huaqiang ZHANG1, Qiqi KOU2, Chen LÜ1 and Jiansheng QIAN1,* |Show fewer author(s)
Author Affiliations
  • 1School of Information and Control Engineering, University of Mining and Technology, Xuzhou 226, China
  • 2School of Computer Science and Technology, University of Mining and Technology, Xuzhou 1116, China
  • show less
    References(54)

    [1] S G ZHANG, Y F CHEN, L J ZHANG et al. Study on robot grasping system of SSVEP-BCI based on augmented reality stimulus. Tsinghua Science and Technology, 28, 322-329(2022).

    [2] D H LIN, S FIDLER, R URTASUN. Holistic Scene Understanding for 3D Object Detection with RGBD Cameras, 1417-1424(1).

    [3] A RASOULI, J K TSOTSOS. Autonomous vehicles that interact with pedestrians: a survey of theory and practice. IEEE Transactions on Intelligent Transportation Systems, 21, 900-918(2019).

    [5] R RANFTL, V VINEET, Q F CHEN et al. Dense Monocular Depth Estimation in Complex Dynamic Scenes, 4058-4066(27).

    [6] [6] 伍锡如, 薛其威. 基于激光雷达的无人驾驶系统三维车辆检测[J]. 光学 精密工程, 2022, 30(4): 489-497. doi: 10.37188/OPE.20223004.0489WUX R, XUEQ W. 3D vehicle detection for unmanned driving systerm based on lidar[J]. Opt. Precision Eng., 2022, 30(4): 489-497. (in Chinese). doi: 10.37188/OPE.20223004.0489

    [7] D EIGEN, C PUHRSCH, R FERGUS. Depth map prediction from a single image using a multi-scale deep network, 2366-2374(13).

    [8] C GODARD, OMAC AODHA, G J BROSTOW. Unsupervised monocular depth estimation with left-right consistency, 6602-6611(21).

    [9] T H ZHOU, M BROWN, N SNAVELY et al. Unsupervised learning of depth and ego-motion from video, 6612-6619(21).

    [10] C GODARD, OMAC AODHA, M FIRMAN et al. Digging into self-supervised monocular depth estimation, 3827-3837.

    [11] V GUIZILINI, R AMBRUS, S PILLAI et al. 3D Packing for self-supervised monocular depth estimation, 2482-2491(13).

    [12] Z H YU, L JIN, S H GAO. P2Net: Patch-Match and Plane-Regularization for Unsupervised Indoor Depth Estimation, 206-222(2020).

    [13] A GEIGER, P LENZ, R URTASUN. Are we ready for autonomous driving?, 3354-3361(16).

    [14] A SAXENA, M SUN, A Y NG. Make3D: learning 3D scene structure from a single still image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 824-840(2009).

    [15] D EIGEN, R FERGUS. Predicting Depth, Surface normals and semantic labels with a common multi-scale convolutional architecture, 2650-2658(7).

    [16] F Y LIU, C H SHEN, G S LIN et al. Learning depth from single monocular images using deep convolutional neural fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 2024-2039(2016).

    [17] S KIM, K PARK, K SOHN et al. Unified Depth Prediction and Intrinsic Image Decomposition From A Single Image Via Joint Convolutional Neural Fields, 143-159(2016).

    [18] H FU, M M GONG, C H WANG et al. Deep ordinal regression network for monocular depth estimation, 2002-2011(18).

    [19] D WOFK, F C MA, T J YANG et al. FastDepth: fast monocular depth estimation on embedded systems, 6101-6108(20).

    [20] C SHU, K YU, Z X DUAN et al. Feature-Metric Loss for Self-Supervised Learning of Depth and Egomotion, 572-588(2020).

    [21] Y H CHEN, C SCHMID, C SMINCHISESCU. Self-Supervised learning with geometric constraints in monocular video: connecting flow, depth, and camera, 7062-7071.

    [22] J S ZHOU, Y W WANG, K H QIN et al. Moving indoor: unsupervised video depth learning in challenging environments, 8617-8626.

    [23] T TUYTELAARS, L VAN GOOL. SURF: Speeded Up Robust Features, 404-417(2006).

    [24] B Y LI, Y HUANG, Z Y LIU et al. Structdepth: leveraging the structural regularities for self-supervised indoor depth estimation, 12643-12653(10).

    [25] D Q CHENG, L L CHEN, C LV et al. Light-guided and cross-fusion U-net for anti-illumination image super-resolution. IEEE Transactions on Circuits and Systems for Video Technology, 32, 8436-8449(2022).

    [26] [26] 黄慧, 董林鹭, 刘小芳, 等. 改进Retinex的低光照图像增强[J]. 光学 精密工程, 2020, 28(8): 1835-1849.HUANGH, DONGL L, LIUX F, et al. Improved retinex low light image enhancement method[J]. Opt. Precision Eng., 2020, 28(8): 1835-1849. (in Chinese)

    [27] Y H ZHANG, J W ZHANG, X J GUO. Kindling the darkness: a practical low-light image enhancer, 1632-1640(2019).

    [28] J R CAI, S H GU, L ZHANG. Learning a deep single image contrast enhancer from multi-exposure images. IEEE Transactions on Image Processing, 27, 2049-2062(2018).

    [29] C CHEN, Q F CHEN, J XU et al. Learning to see in the dark, 3291-3300(18).

    [30] Y F JIANG, X Y GONG, D LIU et al. EnlightenGAN: deep light enhancement without paired supervision. IEEE Transactions on Image Processing, 30, 2340-2349(2021).

    [31] C L GUO, C Y LI, J C GUO et al. Zero-reference deep curve estimation for low-light image enhancement, 1777-1786(13).

    [32] K WANG, Z Y ZHANG, Z Q YAN et al. Regularizing nighttime weirdness: efficient self-supervised monocular depth estimation in the dark, 16035-16044(10).

    [33] K M HE, X Y ZHANG, S Q REN et al. Deep residual learning for image recognition, 770-778(27).

    [34] G HUANG, Z LIU, L VAN DER MAATEN et al. Densely connected convolutional networks, 2261-2269(21).

    [36] [36] 程德强, 赵佳敏, 寇旗旗, 等. 多尺度密集特征融合的图像超分辨率重建[J]. 光学 精密工程, 2022, 30(20): 2489-2500. doi: 10.37188/OPE.20223020.2489CHENGD Q, ZHAOJ M, KOUQ Q, et al. Multi-scale dense feature fusion network for image super-resolution[J]. Opt. Precision Eng., 2022, 30(20): 2489-2500. (in Chinese). doi: 10.37188/OPE.20223020.2489

    [37] [37] 程德强, 陈杰, 寇旗旗, 等. 融合层次特征和注意力机制的轻量化矿井图像超分辨率重建方法[J]. 仪器仪表学报, 2022, 43(8): 73-84.CHENGD Q, CHENJ, KOUQ Q, et al. Lightweight super-resolution reconstruction method based on hierarchical features fusion and attention mechanism for mine image[J]. Chinese Journal of Scientific Instrument, 2022, 43(8): 73-84.(in Chinese)

    [38] [38] 蔡体健, 彭潇雨, 石亚鹏, 等. 通道注意力与残差级联的图像超分辨率重建[J]. 光学 精密工程, 2021, 29(1): 142-151. doi: 10.37188/OPE.20212901.0142CAIT J, PENGX Y, SHIY P, et al. Channel attention and residual concatenation network for image super-resolution[J]. Opt. Precision Eng., 2021, 29(1): 142-151. (in Chinese). doi: 10.37188/OPE.20212901.0142

    [39] J HU, L SHEN, G SUN. Squeeze-and-excitation networks, 7132-7141(18).

    [41] L N LIU, X B SONG, M M WANG et al. Self-supervised monocular depth estimation for all day images using domain separation, 12717-12726(10).

    [43] Z WANG, A C BOVIK, H R SHEIKH et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 13, 600-612(2004).

    [44] N SILBERMAN, D HOIEM, P KOHLI et al. Indoor Segmentation and Support Inference from RGBD Images, 746-760(2012).

    [45] A DAI, A X CHANG, M SAVVA et al. ScanNet: richly-annotated 3d reconstructions of indoor scenes, 2432-2443(21).

    [46] J J HU, M OZAY, Y ZHANG et al. Revisiting single image depth estimation: toward higher resolution maps with accurate object boundaries, 1043-1051(7).

    [47] W YIN, Y F LIU, C H SHEN et al. Enforcing geometric constraints of virtual normal for depth prediction, 5683-5692.

    [48] S FAROOQ BHAT, I ALHASHIM, P WONKA. AdaBins: depth estimation using adaptive bins, 4008-4017(20).

    [49] S NIKLAUS, J M YANG et al. 3D Ken Burns effect from a single image. ACM Transactions on Graphics, 38, 1-15.

    [50] W ZHAO, S H LIU, Y Z SHU et al. Towards better generalization: joint depth-pose learning without PoseNet, 9148-9158(13).

    [51] J W BIAN, H Y ZHAN, N Y WANG et al. Unsupervised scale-consistent depth learning from video. International Journal of Computer Vision, 129, 2548-2564(2021).

    [52] JW BIAN, H ZHAN, N WANG et al. Unsupervised depth learning in challenging indoor video: Weak rectification to rescue. arXiv preprint arXiv, 2020.

    [53] H L JIANG, L Y DING, J J HU et al. PLNet: plane and line priors for unsupervised indoor depth estimation, 741-750(1).

    [54] J W BIAN, H Y ZHAN, N Y WANG et al. Auto-rectify network for unsupervised indoor depth estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 9802-9813(2022).

    Tools

    Get Citation

    Copy Citation Text

    Deqiang CHENG, Huaqiang ZHANG, Qiqi KOU, Chen LÜ, Jiansheng QIAN. Indoor self-supervised monocular depth estimation based on level feature fusion[J]. Optics and Precision Engineering, 2023, 31(20): 2993

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Mar. 1, 2023

    Accepted: --

    Published Online: Nov. 28, 2023

    The Author Email: QIAN Jiansheng (qianjsh@cumt.edu.cn)

    DOI:10.37188/OPE.20233120.2993

    Topics