Journal of the Chinese Ceramic Society, Volume. 51, Issue 2, 531(2023)

Multi-Scale Simulation of Mechanical and Thermal Transport Properties of Materials Based on Machine Learning Potential

WU Jing1...2, HUANG An1, XIE Hanpeng1, WEI Donghai1, LI Aonan1, PENG Bo1, WANG Huimin3, QIN Zhenzhen4, LIU Te-huan2 and QIN Guangzhao1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(112)

    [1] [1] HUANG X, GUO Z. Thermal effect of epilayer on phonon transport of semiconducting heterostructure interfaces[J]. Int J Heat Mass Transfer, 2021, 178: 121613.

    [2] [2] WU J, ZHOU E, QIN Z, et al. Accessing negative Poisson’s ratio of graphene by machine learning interatomic potentials[J]. Nanotechnology, 2022, 33(27): 275710.

    [3] [3] DU Y, MAASSEN J, WU W, et al. Auxetic black phosphorus: A 2D material with negative Poisson’s ratio[J]. Nano Lett, 2016, 16(10): 6701-6708.

    [4] [4] FAN Y, XIANG Y, SHEN H S. Temperature-dependent negative Poisson’s ratio of monolayer graphene: Prediction from molecular dynamics simulations[J]. Nanotechnol Rev, 2019, 8(1): 415-421.

    [5] [5] GRIMA J N, WINCZEWSKI S, MIZZI L, et al. Tailoring graphene to achieve negative Poisson’s ratio properties[J]. Adv Mater, 2015, 27(8): 1455-1459.

    [6] [6] HO D T, HO V H, PARK H S, et al. Negative in-plane Poisson’s ratio for single layer black phosphorus: An atomistic simulation study[J]. Phys Status Solidi (b), 2017, 254(12): 1700285.

    [7] [7] CAI Y, KANG S, XU X. Extremely high tensile strength and superior thermal conductivity of an sp3-hybridized superhard C24 fullerene crystal[J]. J Mater Chem A, 2019, 7(7): 3426-3431.

    [8] [8] CAI Q, SCULLION D, GAN W, et al. High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion[J]. Sci Adv, 2019, 5(6): eaav0129.

    [9] [9] CARRETE J, LI W, MINGO N, et al. Finding unprecedentedly low-thermal-conductivity half-heusler semiconductors via high-throughput materials modeling[J]. Phys Rev X, 2014, 4(1): 011019.

    [10] [10] CUI Y, QIN Z, WU H, et al. Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management[J]. Nat Commun, 2021, 12(1): 1284.

    [11] [11] ZHENG Q, LI S, LI C, et al. High thermal conductivity in isotopically enriched cubic boron phosphide[J]. Adv Funct Mater, 2018, 28(43): 1805116.

    [12] [12] XIE X, YANG K, LI D, et al. High and low thermal conductivity of amorphous macromolecules[J]. Phys Rev B, 2017, 95(3): 035406.

    [13] [13] FENG T, RUAN X. Ultra-low thermal conductivity in graphene nanomesh[J]. Carbon, 2016, 101: 107-113.

    [14] [14] SIVARAMAN G, KRISHNAMOORTHY A N, BAUR M, et al. Machine-learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide[J]. npj Comput Mater, 2020, 6(1): 104.

    [15] [15] ROWE P, DERINGER V L, GASPAROTTO P, et al. An accurate and transferable machine learning potential for carbon[J]. J Chem Phys, 2020, 153(3): 034702.

    [16] [16] ROWE P, CS?NYI G, ALF? D, et al. Development of a machine learning potential for graphene[J]. Phys Rev B, 2018, 97(5): 054303.

    [17] [17] QIAN X, PENG S, LI X, et al. Thermal conductivity modeling using machine learning potentials: Application to crystalline and amorphous silicon[J]. Mater Today Phys, 2019, 10: 100140.

    [18] [18] PODRYABINKIN E V, TIKHONOV E V, SHAPEEV A V, et al. Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning[J]. Phys Rev B, 2019, 99(6): 064114.

    [19] [19] ROWE P, DERINGER V L, GASPAROTTO P, et al. An accurate and transferable machine learning potential for carbon[J]. J Chem Phys, 2020, 153(3): 034702.

    [20] [20] PERILLA J R, GOH B C, CASSIDY C K, et al. Molecular dynamics simulations of large macromolecular complexes[J]. Curr Opinion Struct Biol, 2015, 31: 64-74.

    [21] [21] ZHANG X, XIE H, HU M, et al. Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential[J]. Phys Rev B, 2014, 89(5): 054310.

    [22] [22] YUE S Y, QIN G, ZHANG X, et al. Thermal transport in novel carbon allotropes with sp2 or sp3 hybridization: An ab initio study[J]. Phy Rev B, 2017, 95(8): 085207.

    [23] [23] QIN G, HAO K R, YAN Q B, et al. Exploring T-carbon for energy applications[J]. Nanoscale, 2019, 11(13): 5798-5806.

    [24] [24] QIN G, QIN Z, FANG W Z, et al. Diverse anisotropy of phonon transport in two-dimensional group IV-VI compounds: A comparative study[J]. Nanoscale, 2016, 8(21): 11306-11319.

    [25] [25] QIN G, QIN Z, WANG H, et al. Anomalously temperature-dependent thermal conductivity of monolayer GaN with large deviations from the traditional 1/T law[J]. Phys Rev B, 2017, 95(19): 195416.

    [26] [26] HANAKATA P Z, CUBUK E D, CAMPBELL D K, et al. Accelerated search and design of stretchable graphene kirigami using machine learning[J]. Phys Rev Lett, 2018, 121(25): 255304.

    [27] [27] CHAN H, NARAYANAN B, CHERUKARA M J, et al. Machine learning classical interatomic potentials for molecular dynamics from first-principles training data[J]. J Phys Chem C, 2019, 123(12): 6941-6957.

    [28] [28] CHEN L, TRAN H, BATRA R, et al. Machine learning models for the lattice thermal conductivity prediction of inorganic materials[J]. Comput Mater Sci, 2019, 170: 109155.

    [29] [29] KOROTAEV P. Accessing thermal conductivity of complex compounds by machine learning interatomic potentials[J]. Phys Rev B, 2019, 100: 144308.

    [30] [30] LIU H, QIAN X, BAO H, et al. High-temperature phonon transport properties of SnSe from machine-learning interatomic potential[J]. J Phys: Condensed Matter, 2021, 33(40): 405401.

    [31] [31] MORTAZAVI B, NOVIKOV I S, SHAPEEV A V. A machine-learning-based investigation on the mechanical/failure response and thermal conductivity of semiconducting BC2N monolayers[J]. Carbon, 2022, 188: 431-441.

    [32] [32] MORTAZAVI B, PODRYABINKIN E V, NOVIKOV I S, et al. Efficient machine-learning based interatomic potentialsfor exploring thermal conductivity in two-dimensional materials[J]. J Phys: Materials, 2020, 3(2): 02LT02.

    [33] [33] MORTAZAVI B, JAVVAJI B, SHOJAEI F, et al. Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles[J]. Nano Energy, 2021, 82: 105716.

    [34] [34] BLANK T B, BROWN S D, CALHOUN A W, et al. Neural network models of potential energy surfaces[J]. J Chem Phys, 1995, 103(10): 4129-4137.

    [35] [35] BEHLER J, PARRINELLO M. Generalized neural-network representation of high-dimensional potential-energy surfaces[J]. Phys Rev Lett, 2007, 98(14): 146401.

    [36] [36] SHAPEEV A V. Moment tensor potentials: A class of systematically improvable interatomic potentials[J]. Multiscale Model Simul, 2016, 14(3): 1153-1173.

    [37] [37] BART?K A P, PAYNE M C, KONDOR R, et al. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons[J]. Phys Rev Lett, 2010, 104(13): 136403.

    [38] [38] FAN Z, ZENG Z, ZHANG C, et al. Neuroevolution machine learning potentials: Combining high accuracy and low cost in atomistic simulations and application to heat transport[J]. Phys Rev B, 2021, 104(10): 104309.

    [39] [39] WANG H, ZHANG L, HAN J, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics[J]. Comput Phys Commun, 2018, 228: 178-184.

    [40] [40] CALEGARI ANDRADE M F, KO H Y, ZHANG L, et al. Free energy of proton transfer at the water-TiO2 interface from ab initio deep potential molecular dynamics[J]. Chem Sci, 2020, 11(9): 2335-2341.

    [41] [41] DAI F Z, SUN Y, WEN B, et al. Temperature dependent thermal and elastic properties of high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2: molecular dynamics simulation by deep learning potential[J]. J Mater Sci Technol, 2021, 72: 8-15.

    [42] [42] GARTNER T E, ZHANG L, PIAGGI P M, et al. Signatures of a liquid-liquid transition in an ab initio deep neural network model for water[J]. Proceed National Academy Sci, 2020, 117(42): 26040-26046.

    [43] [43] LI R, LEE E, LUO T. A unified deep neural network potential capable of predicting thermal conductivity of silicon in different phases[J]. Mater Today Phys, 2020, 12: 100181.

    [44] [44] SHI M, MO P, LIU J. Deep neural network for accurate and efficient atomistic modeling of phase change memory[J]. IEEE Electron Device Lett, 2020, 41(3): 365-368.

    [45] [45] ZHANG Y, WANG H, CHEN W, et al. DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models[J]. Comput Phys Commun, 2020, 253: 107206.

    [46] [46] MORTAZAVI B, PODRYABINKIN E V, NOVIKOV I S, et al. Accelerating first-principles estimation of thermal conductivity by machine-learning interatomic potentials: A MTP/ShengBTE solution[J]. Comput Phys Commun, 2021, 258: 107583.

    [47] [47] NOVIKOV I S, GUBAEV K, PODRYABINKIN E, et al. The MLIP package: Moment tensor potentials with mpi and active learning[J]. Machine Learn: Sci Technol, 2020, 2: 025002 .

    [48] [48] NOVOSELOV I I, YANILKIN A V, SHAPEEV A V, et al. Moment tensor potentials as a promising tool to study diffusion processes[J]. Comput Mater Sci, 2019, 164: 46-56.

    [49] [49] SUN P P, BAI L, KRIPALANI D R, et al. A new carbon phase with direct bandgap and high carrier mobility as electron transport material for perovskite solar cells[J]. npj Comput Mater, 2019, 5(1): 9.

    [50] [50] FAN Z, WANG Y, YING P, et al. GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations[J]. J Chem Phys, 2022, 157(11): 114801.

    [51] [51] DERINGER V L, CS?NYI G. Machine learning based interatomic potential for amorphous carbon[J]. Phys Rev B, 2017, 95(9): 094203.

    [52] [52] BONATI L, PARRINELLO M. Silicon liquid structure and crystal nucleation from Ab Initio deep metadynamics[J]. Phys Rev Lett, 2018, 121(26): 265701.

    [53] [53] YANG M, BONATI L, POLINO D, et al. Using metadynamics to build neural network potentials for reactive events: the case of urea decomposition in water[J]. Catal Today, 2022, 387: 143?149.

    [54] [54] ZHU Q, ZENG Q, OGANOV A R. Systematic search for low-enthalpy sp3 carbon allotropes using evolutionary metadynamics[J]. Physical Review B, 2012, 85(20): 201407.

    [55] [55] ZENG J, CAO L, XU M, et al. Complex reaction processes in combustion unraveled by neural network based molecular dynamics simulation[J]. Nat Commun 2020, 11: 5713.

    [56] [56] CHEN J, GU X, CAO B. A review of simulation methods in micro/nanoscale heat conduction[J]. ES Energy Environ, 2018, 1(39): 16-55.

    [57] [57] LI W, CARRETE J, A. KATCHO N, et al. ShengBTE: A solver of the Boltzmann transport equation for phonons[J]. Comput Phys Commun, 2014, 185(6): 1747-1758.

    [58] [58] HANSSON T, OOSTENBRINK C, VAN GUNSTEREN W. Molecular dynamics simulations[J]. Current Opinion Struct Biol, 2002, 12(2): 190-196.

    [59] [59] MINGO N, YANG L. Phonon transport in nanowires coated with an amorphous material: An atomistic Green’s function approach[J]. Phys Rev B, 2003, 68(24): 245406.

    [60] [60] OZPINECI A, CIRACI S. Quantum effects of thermal conductance through atomic chains[J]. Phys Rev B, 2001, 63(12): 125415.

    [61] [61] SEGAL D, NITZAN A, H?NGGI P. Thermal conductance through molecular wires[J]. J Chem Phys, 2003, 119(13): 6840-6855.

    [62] [62] JENG M S, YANG R, SONG D, et al. Modeling the thermal conductivity and phonon transport in nanoparticle composites using monte carlo simulation[J]. J Heat Transfer, 2008, 130(4): 042410.

    [63] [63] FUCHS F, FURTHM?LLER J, BECHSTEDT F, et al. Quasiparticle band structure based on a generalized Kohn-Sham scheme[J]. Phys Rev B, 2007, 76(11): 115109.

    [64] [64] GIANNOZZI P, ANDREUSSI O, BRUMME T, et al. Advanced capabilities for materials modelling with Quantum ESPRESSO[J]. J Phys: Condensed Matter, 2017, 29(46): 465901.

    [65] [65] STEVEPLIMPTON. Fast parallel algorithms for short-range molecular dynamics[J]. J Computa Phys, 1995, 117(1): 1-19.

    [66] [66] DONG H, HIRVONEN P, FAN Z, et al. Heat transport across graphene/hexagonal-BN tilted grain boundaries from phase-field crystal model and molecular dynamics simulations[J]. J Appl Phys, 2021, 130(23): 235102.

    [67] [67] FAN Z, CHEN W, VIERIMAA V, et al. Efficient molecular dynamics simulations with many-body potentials on graphics processing units[J]. Comput Phys Commun, 2017, 218: 10-16.

    [68] [68] FAN Z, ZENG Z, ZHANG C, et al. Neuroevolution machine learning potentials: Combining high accuracy and low cost in atomistic simulations and application to heat transport[J]. Phys Rev B, 2021, 104(10): 104309.

    [69] [69] GABOURIE A J, FAN Z, ALA-NISSILA T, et al. Spectral decomposition of thermal conductivity: Comparing velocity decomposition methods in homogeneous molecular dynamics simulations[J]. Phys Rev B, 2021, 103(20): 205421.

    [70] [70] JENG M S, YANG R, SONG D, et al. Modeling the thermal conductivity and phonon transport in nanoparticle composites using monte carlo simulation[J]. J Heat Transfer, 2008, 130(4): 042410.

    [71] [71] FLOURY J, CARSON J, PHAM Q T. Modelling thermal conductivity in heterogeneous media with the finite element method[J]. Food Bioproc Technol, 2008, 1(2): 161-170.

    [72] [72] LENGVARSK? P, BOCKO J. Prediction of Young’s modulus of graphene sheets by the finite element method[J]. Am J Mech Eng, 2015, 3(6): 225-229.

    [73] [73] MINGO N, YANG L. Phonon transport in nanowires coated with an amorphous material: An atomistic Green’s function approach[J]. Phys Rev B, 2003, 68(24): 245406.

    [74] [74] BRANDBYGE M, MOZOS J L, ORDEJ?N P, et al. Density-functional method for nonequilibrium electron transport[J]. Phys Rev B, 2002, 65(16): 165401.

    [75] [75] DONG J, ZHANG B, ZHANG S, et al. Effects of interface charge-transfer doping on thermoelectric transport properties of black phosphorene-F4TCNQ nanoscale devices[J]. Appl Surface Sci, 2022, 579: 152155.

    [76] [76] TAO Y, CAI S, WU C, et al. Anisotropic phonon transport in van der Waals nanostructures[J]. Phys Lett A, 2022, 427: 127920.

    [77] [77] GU X, FAN Z, BAO H. Thermal conductivity prediction by atomistic simulation methods: Recent advances and detailed comparison[J]. J Appl Phys, 2021, 130(21): 210902.

    [78] [78] JIANG P, QIAN X, YANG R. Tutorial: Time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials[J]. J Appl Phys, 2018, 124(16): 161103.

    [79] [79] ZHANG Y, ESLAMISARAY M A, FENG T, et al. Observation of suppressed diffuson and propagon thermal conductivity of hydrogenated amorphous silicon films[J]. Nanoscale Adv, 2022, 4(1): 87-94.

    [80] [80] WANG M, RAMER G, PEREZ-MORELO D J, et al. High throughput nanoimaging of thermal conductivity and interfacial thermal conductance[J]. Nano Lett, 2022, 22(11): 4325-4332.

    [81] [81] THAKUR S, DIONNE C J, KARNA P, et al. Density and atomic coordination dictate vibrational characteristics and thermal conductivity of amorphous silicon carbide[J]. Phys Rev Mater, 2022, 6(9): 094601.

    [82] [82] JIANG P, WANG D, XIANG Z, et al. A new spatial-domain thermoreflectance method to measure a broad range of anisotropic in-plane thermal conductivity[J]. Int J Heat Mass Transfer, 2022, 191: 122849.

    [83] [83] ALAGHEMANDI M, ALGAER E, B?HM M C, et al. The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations[J]. Nanotechnology, 2009, 20(11): 115704.

    [84] [84] CHEN W, ZHANG J, YUE Y. Molecular dynamics study on thermal transport at carbon nanotube interface junctions: Effects of mechanical force and chemical functionalization[J]. Int J Heat Mass Transfer, 2016, 103: 1058-1064.

    [85] [85] BART?K A P, KERMODE J, BERNSTEIN N, et al. Machine learning a general-purpose interatomic potential for silicon[J]. Phys Rev X, 2018, 8(4): 041048.

    [86] [86] BUTLER K T, DAVIES D W, CARTWRIGHT H, et al. Machine learning for molecular and materials science[J]. Nature, 2018, 559(7715): 547-555.

    [87] [87] CHAN H, SASIKUMAR K, SRINIVASAN S, et al. Machine learning a bond order potential model to study thermal transport in WSe2 nanostructures[J]. Nanoscale, 2019, 11(21): 10381-10392.

    [88] [88] CHEN L, TRAN H, BATRA R, et al. Machine learning models for the lattice thermal conductivity prediction of inorganic materials[J]. Comput Mater Sci, 2019, 170: 109155.

    [89] [89] KOROTAEV P. Accessing thermal conductivity of complex compounds by machine learning interatomic potentials[J]. Phys Rev B, 2019, 100(14): 144308.

    [90] [90] STUART S J, TUTEIN A B, HARRISON J A. A reactive potential for hydrocarbons with intermolecular interactions[J]. J Chem Phys, 2000, 112(14): 6472-6486.

    [91] [91] BRENNER D W, SHENDEROVA O A, HARRISON J A, et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons[J]. J Phys: Condensed Matter, 2002, 14(4): 783.

    [92] [92] SEVIK C, KINACI A, HASKINS J B. Influence of disorder on thermal transport properties of boron nitride nanostructures[J]. Phys Rev B, 2012, 86(7): 075403.

    [93] [93] JIANG J W, CHANG T, GUO X, et al. Intrinsic negative Poisson’s ratio for single-layer graphene[J]. Nano Lett, 2016, 16(8): 5286-5290.

    [94] [94] QIN Z, QIN G, HU M. Origin of anisotropic negative Poisson’s ratio in graphene[J]. Nanoscale, 2018, 10(22): 10365-10370.

    [95] [95] DAI F Z, WEN B, SUN Y, et al. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential[J]. J Mater Sci Technol, 2020, 43: 168-174.

    [96] [96] HEO S H, YOO J, LEE H, et al. Solution-processed hole-doped snse thermoelectric thin-film devices for low-temperature power generation[J]. ACS Energy Lett, 2022, 7(6): 2092-2101.

    [97] [97] OUYANG N, WANG C, CHEN Y. Temperature- and pressure-dependent phonon transport properties of SnS across phase transition from machine-learning interatomic potential[J]. Int J Heat Mass Transfer, 2022, 192: 122859.

    [98] [98] GUO D, LI C, LI K, et al. The thermoelectric performance of new structure SnSe studied by quotient graph and deep learning potential[J]. Mater Today Energy, 2021, 20: 100665.

    [99] [99] MORTAZAVI B, SILANI M, PODRYABINKIN E V, et al. First-principles multiscale modeling of mechanical properties in graphene/borophene heterostructures empowered by machine-learning interatomic potentials[J]. Adv Mater, 2021: 2102807.

    [100] [100] MORTAZAVI B. Machine-learning interatomic potentials enable first-principles multiscale modeling of lattice thermal conductivity in graphene/borophene heterostructures[J]. Mater Horizons, 2020, 9: 2359-2367.

    [101] [101] HE R, WU H, ZHANG L, et al. Structural phase transitions in SrTiO3 from deep potential molecular dynamics[J]. Phys Rev B, 2022, 105(6): 064104.

    [102] [102] KIM S E, MUJID F, RAI A, et al. Extremely anisotropic van der Waals thermal conductors[J]. Nature, 2021, 597(7878): 660-665.

    [103] [103] LI R, LEE E, LUO T. A unified deep neural network potential capable of predicting thermal conductivity of silicon in different phases[J]. Mater Today Phys, 2020, 12: 100181.

    [104] [104] PEGOLO P, BARONI S, GRASSELLI F. Temperature- and vacancy-concentration-dependence of heat transport in Li3ClO from multi-method numerical simulations[J]. npj Comput Mater, 2022, 8(1): 24.

    [105] [105] TIAN F, SONG B, CHEN X, et al. Unusual high thermal conductivity in boron arsenide bulk crystals[J]. Science, 2018, 361(6402): 582-585.

    [106] [106] DAMES C. Ultrahigh thermal conductivity confirmed in boron arsenide[J]. Science, 2018, 361(6402): 549-550.

    [107] [107] KANG J S, LI M, WU H, et al. Experimental observation of high thermal conductivity in boron arsenide[J]. Science, 2018, 361(6402): 575-578.

    [108] [108] LI S, ZHENG Q, LV Y, et al. High thermal conductivity in cubic boron arsenide crystals[J]. Science, 2018, 361(6402): 579-581.

    [109] [109] KANG J S, LI M, WU H, et al. Integration of boron arsenide cooling substrates into gallium nitride devices[J]. Nat Electron, 2021, 4(6): 416-423.

    [110] [110] WU J, ZHOU E, HUANG A, et al. Deep-potential driven multiscale simulation of gallium nitride devices on boron arsenide cooling substrates[J]. arXiv Preprint, 2022: 2201.00516.

    [111] [111] LIU Y, GUO B, ZOU X, et al. Machine learning assisted materials design and discovery for rechargeable batteries[J]. Energy Storage Mater, 2020, 31: 434-450.

    [112] [112] UNKE O T, CHMIELA S, GASTEGGER M, et al. SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects[J]. Nat Commun, 2021, 12(1): 7273.

    Tools

    Get Citation

    Copy Citation Text

    WU Jing, HUANG An, XIE Hanpeng, WEI Donghai, LI Aonan, PENG Bo, WANG Huimin, QIN Zhenzhen, LIU Te-huan, QIN Guangzhao. Multi-Scale Simulation of Mechanical and Thermal Transport Properties of Materials Based on Machine Learning Potential[J]. Journal of the Chinese Ceramic Society, 2023, 51(2): 531

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Oct. 1, 2022

    Accepted: --

    Published Online: Mar. 11, 2023

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20220826

    Topics