International Journal of Extreme Manufacturing, Volume. 4, Issue 1, 15201(2022)

Understanding the Rayleigh instability in humping phenomenon during laser powder bed fusion process

Wenxuan Zhang1...2, Wenyuan Hou3, Luc Deike3,4 and Craig Arnold3,* |Show fewer author(s)
Author Affiliations
  • 1Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States of America
  • 2Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ 08544, United States of America
  • 3Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, United States of America
  • 4High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, United States of America
  • show less
    References(25)

    [1] [1] Bradstreet B J 1968 Effect of surface tension and metal flow on weld bead formation Weld. J. 47 314-22

    [2] [2] Gratzke U, Kapadia P D, Dowden J, Kroos J and Simon G 1992 Theoretical approach to the humping phenomenon in welding processes J. Phys. D: Appl. Phys. 25 1640-7

    [3] [3] Nguyen T C, Weckman D C, Johnson D A and Kerr H W 2005 The humping phenomenon during high speed gas metal arc welding Sci. Technol. Weld. Join. 10 447-59

    [4] [4] Cho M H and Farson D F 2007 Understanding bead hump formation in gas metal arc welding using a numerical simulation Metall. Mater. Trans. B 38 305-19

    [5] [5] Otto A, Patschger A and Seiler M 2016 Numerical and experimental investigations of humping phenomena in laser micro welding Phys. Procedia 83 1415-23

    [6] [6] Wu D S, Hua X M, Ye D J and Li F 2017 Understanding of humping formation and suppression mechanisms using the numerical simulation Int. J. Heat Mass Transfer 104 634-43

    [7] [7] Chen Y, Peng X, Kong L B, Dong G X, Remani A and Leach R 2021 Defect inspection technologies for additive manufacturing Int. J. Extreme Manuf. 3 022002

    [8] [8] Chao W, Zhang Z Z, Cheng D X, Sun Z, Zhu M H and Li L 2020 An overview of laser-based multiple metallic material additive manufacturing: from macro- to micro-scales Int. J. Extreme Manuf. 3 012003

    [9] [9] Yadroitsev I and Bertrand S I 2007 Parametric analysis of the selective laser melting process Appl. Surf. Sci. 253 8064-9

    [10] [10] Li R D, Liu J H, Shi Y S, Wang L and Jiang W 2012 Balling behavior of stainless steel and nickel powder during selective laser melting process Int. J. Adv. Manuf. Technol. 59 1025-35

    [11] [11] Roehling T T, Wu S S Q, Khairallah S A, Roehling J D, Soezeri S S, Crumb M F and Matthews M J 2017

    [12] [12] Shi R P, Khairallah S A, Roehling T T, Heo T W, McKeown J T and Matthews M J 2020 Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy Acta Mater. 184 284-305

    [13] [13] Gusarov A V and Smurov I 2010 Modeling the interaction of laser radiation with powder bed at selective laser melting Phys. Procedia 5 381-94

    [14] [14] King W, Anderson A T, Ferencz R M, Hodge N E, Kamath C and Khairallah S A 2015 Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory Mater. Sci. Technol. 31 957-68

    [15] [15] Zhang W X, Hou W Y, Deike L and Arnold C B 2020 Using a dual-laser system to create periodic coalescence in laser powder bed fusion Acta Mater. 201 14-22

    [16] [16] King W E, Barth H D, Castillo V M, Gallegos G F, Gibbs J W, Hahn D E, Kamath C and Rubenchik A M 2014 Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing J. Mater. Process. Technol. 214 2915-25

    [17] [17] Rayleigh J W S B 1896 The Theory of Sound vol 2 (London: Macmillan)

    [18] [18] Davis S H 1980 Moving contact lines and rivulet instabilities. Part 1. The static rivulet J. Fluid Mech. 98 225-42

    [19] [19] Gao F Q and Sonin A A 1994 Precise deposition of molten microdrops: the physics of digital microfabrication Proc. R. Soc. A 444 533-54

    [20] [20] Schiaffino S and Sonin A A 1997 Formation and stability of liquid and molten beads on a solid surface J. Fluid Mech. 343 95-110

    [21] [21] Nguyen T C, Weckman D C, Johnson D A and Kerr H W 2006 High speed fusion weld bead defects Sci. Technol. Weld. Join. 11 618-33

    [22] [22] Schiaffino S 1996 The Fundamentals of Molten Microdrop Deposition and Solidification (Cambridge, MA: MIT Press)

    [23] [23] Rubenchik A M, King W E and Wu S S 2018 Scaling laws for the additive manufacturing J. Mater. Process. Technol. 257 234-43

    [24] [24] Zhang W X, Wong K, Morales M, Molpeceres C and Arnold C B 2020 Implications of using two low-power continuous-wave lasers for polishing Int. J. Extreme Manuf. 2 035101

    [25] [25] Hann D B, Iammi J and Folkes J 2011 A simple methodology for predicting laser-weld properties from material and laser parameters J. Phys. D: Appl. Phys. 44 445401

    Tools

    Get Citation

    Copy Citation Text

    Wenxuan Zhang, Wenyuan Hou, Luc Deike, Craig Arnold. Understanding the Rayleigh instability in humping phenomenon during laser powder bed fusion process[J]. International Journal of Extreme Manufacturing, 2022, 4(1): 15201

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Sep. 1, 2021

    Accepted: --

    Published Online: Jan. 22, 2023

    The Author Email: Arnold Craig (cbarnold@princeton.edu)

    DOI:10.1088/2631-7990/ac466d

    Topics