Journal of the Chinese Ceramic Society, Volume. 52, Issue 7, 2371(2024)

Research Progress on Vanadium Dioxide in Terahertz Metamaterials

GAO Min*... LUO Yiheng, LU Chang and LIN Yuan |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(79)

    [1] [1] SHELBY R A, SMITH D R, SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79.

    [2] [2] VESELAGO V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Sov Phys Usp, 1968, 10(4): 509-514.

    [3] [3] ENOCH S, TAYEB G, SABOUROUX P, et al. A metamaterial for directive emission[J]. Phys Rev Lett, 2002, 89(21): 213902.

    [4] [4] PENDRY J B. Negative refraction makes a perfect lens[J]. Phys Rev Lett, 2000, 85(18): 3966-3969.

    [5] [5] FANG N, LEE H, SUN C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534-537.

    [6] [6] LIU Z W, LEE H, XIONG Y, et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects[J]. Science, 2007, 315(5819): 1686.

    [7] [7] SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980.

    [8] [8] PENDRY J B, SCHURIG D, SMITH D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780-1782.

    [9] [9] LEONHARDT U. Optical conformal mapping[J]. Science, 2006, 312(5781): 1777-1780.

    [10] [10] LI J, PENDRY J B. Hiding under the carpet: A new strategy for cloaking[J]. Phys Rev Lett, 2008, 101(20): 203901.

    [11] [11] LIU R, JI C, MOCK J J, et al. Broadband ground-plane cloak[J]. Science, 2009, 323(5912): 366-369.

    [12] [12] ERGIN T, STENGER N, BRENNER P, et al. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 2010, 328(5976): 337-339.

    [13] [13] MA H F, CUI T J. Three-dimensional broadband ground-plane cloak made of metamaterials[J]. Nat Commun, 2010, 1(3): 21.

    [14] [14] GAO F, LI D, PENG R W, et al. Tunable interference of light behind subwavelength apertures[J]. Appl Phys Lett, 2009, 95(1): 011104.

    [15] [15] FAN R H, ZHOU Y, REN X P, et al. Freely tunable broadband polarization rotator for terahertz waves[J]. Adv Mater, 2015, 27(7): 1201-1206.

    [16] [16] ZHELUDEV N I, PLUM E. Reconfigurable nanomechanical photonic metamaterials[J]. Nature Nanotech, 2016, 11(1): 16-22.

    [17] [17] WANG Z J, JING L Q, YAO K, et al. Origami-based reconfigurable metamaterials for tunable chirality[J]. Adv Mater, 2017, 29(27): 1700412.

    [18] [18] LAPINE M, SHADRIVOV I V, POWELL D A, et al. Magnetoelastic metamaterials[J]. Nat Mater, 2011, 11(1): 30-33.

    [19] [19] MA Z T, GENG Z X, FAN Z Y, et al. Modulators for terahertz communication: The Current state of the art[J]. Research, 2019, 2019: 6482975.

    [20] [20] KIM I, KIM W S, KIM K, et al. Holographic metasurface gas sensors for instantaneous visual alarms[J]. Sci Adv, 2021, 7(15): eabe9943.

    [21] [21] KIM I, ANSARI M A, MEHMOOD M Q, et al. Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators[J]. Adv Mater, 2020, 32(50): e2004664.

    [22] [22] WAN C W, LI Z, WAN S, et al. Electric-driven meta-optic dynamics for simultaneous near-/ far-field multiplexing display[J]. Adv Funct Materials, 2022, 32(10): 2110592.

    [23] [23] CHENG J R, FAN F, CHANG S J. Recent progress on graphene-functionalized metasurfaces for tunable phase and polarization control[J]. Nanomaterials, 2019, 9(3): 398.

    [24] [24] LIU P Q, VALMORRA F, MAISSEN C, et al. Electrically tunable graphene anti-dot array terahertz plasmonic crystals exhibiting multi-band resonances[J]. Optica, 2015, 2(2): 135.

    [25] [25] JU L, GENG B S, HORNG J, et al. Graphene plasmonics for tunable terahertz metamaterials[J]. Nat Nanotechnol, 2011, 6(10): 630-634.

    [26] [26] HE X Y, LIU F, LIN F T, et al. Tunable terahertz Dirac semimetal metamaterials[J]. J Phys D: Appl Phys, 2021, 54(23): 235103.

    [27] [27] BAN S H, MENG H Y, ZHAI X, et al. Tunable triple-band and broad-band convertible metamaterial absorber with bulk Dirac semimetal and vanadium dioxide[J]. J Phys D: Appl Phys, 2021, 54(17): 174001.

    [28] [28] JEONG Y G, BAHK Y M, KIM D S. Dynamic terahertz plasmonics enabled by phase-change materials[J]. Adv Opt Mater, 2020, 8(3): 1900548.

    [29] [29] GHOLIPOUR B, ZHANG J F, MACDONALD K F, et al. An all-optical, non-volatile, bidirectional, phase-change meta-switch[J]. Adv Mater, 2013, 25(22): 3050-3054.

    [30] [30] BEHERA J K, LIU K, LIAN M, et al. A reconfigurable hyperbolic metamaterial perfect absorber[J]. Nanoscale Adv, 2021, 3(6): 1758-1766.

    [31] [31] HILTON D J, PRASANKUMAR R P, FOURMAUX S, et al. Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide[J]. Phys Rev Lett, 2007, 99(22): 226401.

    [32] [32] NAKAJIMA M, TAKUBO N, HIROI Z, et al. Photoinduced metallic state in VO2 proved by the terahertz pump-probe spectroscopy[J]. Appl Phys Lett, 2008, 92(1): 011907.

    [33] [33] ZHAN H, ASTLEY V, HVASTA M, et al. The metal-insulator transition in VO2 studied using terahertz apertureless near-field microscopy[J]. Appl Phys Lett, 2007, 91(16): 162110.

    [34] [34] JEPSEN P U, FISCHER B M, THOMAN A, et al. Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy[J]. Phys Rev B, 2006, 74(20): 205103.

    [35] [35] MORIN F J. Oxides which show a metal-to-insulator transition at the neel temperature[J]. Phys Rev Lett, 1959, 3(1): 34-36.

    [36] [36] GAO Y F, LUO H J, ZHANG Z T, et al. Nanoceramic VO2 thermochromic smart glass: A review on progress in solution processing[J]. Nano Energy, 2012, 1(2): 221-246.

    [37] [37] KE Y J, WANG S C, LIU G W, et al. Vanadium dioxide: The multistimuli responsive material and its applications[J]. Small, 2018, 14(39): e1802025.

    [38] [38] ZHU Y H, ZHAO Y, HOLTZ M, et al. Effect of substrate orientation on terahertz optical transmission through VO2 thin films and application to functional antireflection coatings[J]. J Opt Soc Am B, JOSAB, 2012, 29(9): 2373-2378.

    [39] [39] ZHOU D X, PARROTT E P J, PAUL D J, et al. Determination of complex refractive index of thin metal films from terahertz time-domain spectroscopy[J]. J Appl Phys, 2008, 104(5): 53110-53110-9.

    [40] [40] WALTHER M, COOKE D G, SHERSTAN C, et al. Terahertz conductivity of thin gold films at the metal-insulator percolation transition[J]. Phys Rev B, 2007, 76(12): 125408.

    [41] [41] FU X J, SHI L, YANG J, et al. Flexible terahertz beam manipulations based on liquid-crystal-integrated programmable metasurfaces[J]. ACS Appl Mater Interfaces, 2022, 14(19): 22287-22294.

    [42] [42] BAI X D, ZHANG F L, SUN L, et al. Time-modulated transmissive programmable metasurface for low sidelobe beam scanning[J]. Research, 2022, 2022: 9825903.

    [43] [43] KATS M A, CAPASSO F. Optical absorbers based on strong interference in ultra-thin films[J]. Laser Photonics Rev, 2016, 10(5): 699.

    [44] [44] XU X Q, RAN F T, FAN Z M, et al. Microstructural engineering of flexible and broadband microwave absorption films with hierarchical superstructures derived from bimetallic metal-organic framework[J]. Carbon, 2021, 178: 320-331.

    [45] [45] HUANG J, LI J N, YANG Y, et al. Broadband terahertz absorber with a flexible, reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces[J]. Opt Express, 2020, 28(12): 17832-17840.

    [46] [46] LI W W, XU M Z, XU H X, et al. Metamaterial absorbers: From tunable surface to structural transformation[J]. Adv Mater, 2022, 34(38): e2202509.

    [47] [47] LIU W W, SONG Z Y. Terahertz absorption modulator with largely tunable bandwidth and intensity[J]. Carbon, 2021, 174: 617-624.

    [48] [48] LIN H Y, ZOU Y K, WU Y K, et al. Broadband terahertz metamaterial absorber with a tunable performance based on vanadium dioxide[J]. Appl Phys A, 2023, 129(8): 565.

    [49] [49] MOU N L, TANG B, LI J Z, et al. Switchable ultra-broadband terahertz wave absorption with VO2-based metasurface[J]. Sci Rep, 2022, 12(1): 2501.

    [50] [50] LV T T, DONG G H, QIN C H, et al. Switchable dual-band to broadband terahertz metamaterial absorber incorporating a VO2 phase transition[J]. Opt Express, 2021, 29(4): 5437-5447.

    [51] [51] GE J H, ZHANG Y Q, DONG H X, et al. Nanolayered VO2-based switchable terahertz metasurfaces as near-perfect absorbers and antireflection coatings[J]. ACS Appl Nano Mater, 2022, 5(4): 5569-5577.

    [52] [52] ZHANG S, GENOV D A, WANG Y, et al. Plasmon-induced transparency in metamaterials[J]. Phys Rev Lett, 2008, 101(4): 047401.

    [53] [53] WANG D C, SUN S, FENG Z, et al. Enabling switchable and multifunctional terahertz metasurfaces with phase-change material[J]. Opt Mater Express, 2020, 10(9): 2054.

    [54] [54] ZHANG Z J, YANG J B, HAN Y X, et al. Actively tunable terahertz electromagnetically induced transparency analogue based on vanadium-oxide-assisted metamaterials[J]. Appl Phys A, 2020, 126(3): 199.

    [55] [55] HU Y Z, TONG M Y, XU Z J, et al. Spatiotemporal terahertz metasurfaces for ultrafast all-optical switching with electric-triggered bistability[J]. Laser Photonics Rev, 2021, 15(3): 2000456.

    [56] [56] HU Y Z, TONG M Y, HU S Y, et al. Spatiotemporal lineshape tailoring in BIC-mediated reconfigurable metamaterials[J]. Adv Funct Materials, 2022, 32(34): 2203680.

    [57] [57] ZHU S Q, DONG B W, GUO G X, et al. Terahertz metasurfaces for thermally controlled optical encryption[J]. Laser Photonics Rev, 2023, 17(10): 2300233.

    [58] [58] YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.

    [59] [59] ZHANG S J, CHEN X Y, LIU K, et al. Nonvolatile reconfigurable terahertz wave modulator[J]. PhotoniX, 2022, 3: 7.

    [60] [60] ZHANG H F, ZHANG X Q, XU Q, et al. High-efficiency dielectric metasurfaces for polarization-dependent terahertz wavefront manipulation[J]. Adv Opt Mater, 2018, 6(1): 1700773.

    [61] [61] QI M Q, TANG W X, CUI T J. A broadband Bessel beam launcher using metamaterial lens[J]. Sci Rep, 2015, 5: 11732.

    [62] [62] CHEN W T, KHORASANINEJAD M, ZHU A Y, et al. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces[J]. Light Sci Appl, 2017, 6(5): e16259.

    [63] [63] LIU X B, WANG Q, ZHANG X Q, et al. Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface[J]. Adv Opt Mater, 2019, 7(12): 1900175.

    [64] [64] CONG X, ZENG H X, WANG S Q, et al. Dynamic bifunctional THz metasurface via dual-mode decoupling[J]. Photon Res, 2022, 10(9): 2008.

    [65] [65] CHEN B W, YANG S X, CHEN J, et al. Directional terahertz holography with thermally active Janus metasurface[J]. Light Sci Appl, 2023, 12(1): 136.

    [66] [66] JIANG M Z, HU F R, ZHANG L H, et al. Electrically triggered VO2 reconfigurable metasurface for amplitude and phase modulation of terahertz wave[J]. J Light Technol, 2021, 39(11): 3488-3494.

    [67] [67] LIU M, PLUM E, LI H, et al. Switchable chiral mirrors[J]. Adv Opt Mater, 2020, 8(15): 2000247.

    [68] [68] LIU M, PLUM E, LI H, et al. Temperature-controlled optical activity and negative refractive index[J]. Adv Funct Materials, 2021, 31(14): 2010249.

    [69] [69] CUI T J, QI M Q, WAN X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light Sci Appl, 2014, 3(10): e218.

    [70] [70] MA Q, BAI G D, JING H B, et al. Smart metasurface with self-adaptively reprogrammable functions[J]. Light Sci Appl, 2019, 8: 98.

    [71] [71] ZHANG H F, WU Z M, HE Q, et al. Preparation and investigation of sputtered vanadium dioxide films with large phase-transition hysteresis loops[J]. Appl Surf Sci, 2013, 277: 218-222.

    [72] [72] JO G B, LEE Y R, CHOI J H, et al. Itinerant ferromagnetism in a Fermi gas of ultracold atoms[J]. Science, 2009, 325(5947): 1521-1524.

    [73] [73] CUI Y Y, KE Y J, LIU C, et al. Thermochromic VO2 for energy-efficient smart windows[J]. Joule, 2018, 2(9): 1707-1746.

    [74] [74] CHEN B W, WU J B, LI W L, et al. Programmable terahertz metamaterials with non-volatile memory[J]. Laser Photonics Rev, 2022, 16(4): 2100472.

    [75] [75] LIANG W L, LI G, ZHOU Q L, et al. Resonance dependence of electrically reconfigurable VO2- based THz metadevice for memory information processing[J]. Appl Phys Lett, 2023, 122(7): 071702.

    [76] [76] CHEN B W, WANG X R, LI W L, et al. Electrically addressable integrated intelligent terahertz metasurface[J]. Sci Adv, 2022, 8(41): eadd1296.

    [77] [77] GU D E, ZHENG H H, MA Y H, et al. A highly-efficient approach for reducing phase transition temperature of VO2 polycrystalline thin films through Ru4+-doping[J]. J Alloys Compd, 2019, 790: 602-609.

    [78] [78] CHENG Y L, ZHANG X Q, FANG C Q, et al. Synthesis, structure and properties of printable W-doped thermochromic VO2 with a low phase transition temperature[J]. Ceram Int, 2018, 44(16): 20084-20092.

    [79] [79] MA W, CHENG F, LIU Y M. Deep-learning-enabled on-demand design of chiral metamaterials[J]. ACS Nano, 2018, 12(6): 6326-6334.

    Tools

    Get Citation

    Copy Citation Text

    GAO Min, LUO Yiheng, LU Chang, LIN Yuan. Research Progress on Vanadium Dioxide in Terahertz Metamaterials[J]. Journal of the Chinese Ceramic Society, 2024, 52(7): 2371

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 16, 2023

    Accepted: --

    Published Online: Aug. 26, 2024

    The Author Email: Min GAO (mingao@uestc.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20230866

    Topics