Acta Photonica Sinica, Volume. 48, Issue 11, 1148003(2019)
Crystal Fiber and Crystal-derived Fiber Preparation and Application: A Review
[1] [1] DAWSON J W, MESSERLY M J, HEEBNER J E, et al. Power scaling analysis of fiber lasers and amplifiers based on non-silica materials[C]. SPIE, 2010,7686: 768611.
[2] [2] KECK D. A future full of light[J].IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6: 1254-1258.
[3] [3] LABELLE J, MLAVSKY A I. Growth of controlled profile crystals from the melt: part I-sapphire filaments[J]. Materials Research Bulletin, 1971, 6(7): 571-579.
[4] [4] SLACK G, OLIVER D W. Thermal conductivity of garnets and phonon scattering by rare-earth ions[J]. Physical Review B, 1971, 4(2): 592.
[5] [5] DRAGIC P, LAW P, BALLATO J, et al. Brillouin spectroscopy of YAG-derived optical fibers[J]. Optics Express, 2010, 18(10): 10055-10067.
[6] [6] FAIR G E,HAY R S, LEE H D, et al. Towards optical quality yttrium aluminum garnet (YAG) fibers: recent efforts at AFRL/RX[C]. SPIE, 2010,7686: 76860E.
[7] [7] DAWSON J W, MESSERLY M J, BEACH R J, et al. Analysis of the scalability of diffraction limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266.
[8] [8] HAGGERTY J S. Final report NASA-CR-120948[R].1972.
[9] [9] BURRUS C A, STONE J. Single-crystal fiber optical devices: A Nd: YAG fiber laser[J].Applied Physics Letters, 1975,26(6): 318-320.
[10] [10] ZHANG J,CHEN Y, PONTING B, et al. Highly efficient waveguided laser performance of diode pumped unclad Yb∶YAG crystalline fibre[J]. Laser Physics Letters, 2016, 13(7): 075101.
[11] [11] DUBINSKII M, ZHANG Jun, FROMZEL V, et al. Low-loss ‘crystalline-core/crystalline-clad’(C4) fibers for highly power scalable high efficiency fiber lasers[J]. Optics Express, 2018, 26(4): 5092-5101.
[12] [12] DLEN X, PIEHLER S, DIDIERJEAN J,et al. 250 W single-crystal fiber Yb: YAG laser[J]. Optics Letters, 2012, 37(14): 2898-2900.
[13] [13] MARKOVIC V,ROHRBACHER A, HOFMANN P, et al. 160 W 800 fs Yb: YAG single crystal fiber amplifier without CPA[J].Optics Express, 2015, 23(20): 25883-25888.
[14] [14] YOON D H, YONENAGA I, FUKUDA T, et al. Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method[J]. Journal of Crystal Growth, 1994, 142(3-4): 339-343.
[15] [15] EPELBAUM B M,YOSHIKAW A, SHIMAMUR K, et al. Microstructure of Al2O3/Y3Al5O12 eutectic fibers grown by μ-PD method[J]. Journal of Crystal Growth, 1999, 198: 471-475.
[16] [16] FUKUDA T, CHANI V I. Shaped crystals: growth by micro-pulling-down technique[M]. Springer Science & Business Media, 2007.
[17] [17] GOUTAUDIER C, LEBBOU K, GUYOT Y, et al. Advances in fibre crystals: growth and optimization of spectroscopic properties for Yb3+ doped laser crystals. [J] Annales de Chimie Science des Materiaux, 2003, 28(6): 73-88.
[18] [18] SHIM J B,LEE J H, YOSHIKAWA A, et al. Growth of Bi4Ge3O12 single crystal by the micro-pulling-down method from bismuth rich composition[J]. Journal of Crystal Growth, 2002, 243(1): 157-163.
[19] [19] SAMANTA G, YECKEL A, DAGGOLU P, et al. Analysis of limits for sapphire growth in a micro-pulling-down system[J]. Journal of Crystal Growth, 2011, 335(1): 148-159.
[20] [20] YUAN Dong-sheng, JIA Zhi-tai, SHU Jun, et al. Development of micro-pulling-down equipment for crystal fiber growth and YAG single crystal growth[J]. Journal of Synthetic Crystals, 2014, 43(6): 1317-1322.
[21] [21] YUAN Dong-sheng, JIA Zhi-tai, LI Yang, et al. Micro-pulling-down furnace modification and single crystal fibers growth[C]. SPIE, 2016, 9726: 97260E.
[22] [22] LIN Y K, WU Q H, WANG S Z, et al. Growth and laser properties of Nd3+-doped Bi4Ge3O12 single-crystal fiber[J]. Optics Letters, 2018,43(6): 1219-1221.
[23] [23] ZOU Zheng-gang, PENG Guang-huai, HU Jun-jie,et al. Microstructure and luminescence properties of a Ce3+-doped Lu3Al5O12/Al2O3 eutectic grown by the micropulling down method[J]. Journal of Alloys and Compounds, 2019,794: 144-152.
[24] [24] DLEN X, MARTIAL I, DIDIERJEAN J, et al. 34 W continuous wave Nd: YAG single crystal fiber laser emitting at 946 nm[J]. Applied Physics B, 2011, 104(1): 1.
[25] [25] DEYRA L, MATIAL I, DIDIERJEAN J,et al. 3 W, 300 μJ, 25 ns pulsed 473 nm blue laser based on actively Q-switched Nd: YAG single-crystal fiber oscillator at 946 nm[J]. Optics Letters, 2013, 38(16): 3013-3016.
[26] [26] RAO Han, LIU Zhao-jun, CONG Zhen-hua, et al. High power 1443.5 nm laser with Nd: YAG single crystal fiber[J]. Crystals, 2017, 7(7): 189.
[27] [27] WANG Jian-lei, SONG Qing-song, SUN Yang-wei, et al. High-performance Ho: YAG single-crystal fiber laser in-band pumped by a Tm-doped all-fiber laser[J]. Optics Letters, 2019, 44(2): 455-458.
[28] [28] KIENEL M, MLLER M, DEMMLER S, et al. Coherent beam combination of Yb: YAG single-crystal rod amplifiers[J]. Optics Letters, 2014, 39(11): 3278-3281.
[29] [29] MARKOVIC V, ROHRBACHER A, HOFMANN P, et al. 100W class compact Yb: YAG single crystal fiber amplifier for femtosecond lasers without CPA[C]. SPIE, 2016,9726: 972609.
[30] [30] LIU Zhao-jun, MEN Shao-jie, LIU Yang,et al. Single frequency MOPA based on Nd: YAG single crystal fiber and rods[J]. Optics Letters, 2016, 41(7): 1356-1359.
[31] [31] KANCHANAVALEERAT E,COCHET-MUCHY D, KOKTA M, et al. Crystal growth of high doped Nd: YAG[J]. Optical Materials, 2004, 26(4): 337-341.
[32] [32] GASSON D B, COCKAYNE B, Oxide crystal growth using gas lasers[J]. Journal of Materials Science, 1970, 5(2): 100-104.
[33] [33] FOULON G, BRENIER A, FERRIOL M, et al. Laser heated pedestal growth and spectroscopic properties of neodymium doped Ba2NaNb5O15 single crystal fibers[J]. Chemical Physics Letters, 1996, 249(5-6): 381-386.
[34] [34] JUNDT D H,FEJER M M, BYER R L, et al. Characterization of single-crystal sapphire fibers for optical power delivery systems[J]. Applied Physics Letters, 1989, 55(21): 2170-2172.
[35] [35] HARRINGTON J A. Single-crystal fiber optics: a review[C].SPIE, 2014,8959: 895902.
[36] [36] RUEDA J E, HERNANDES A C. Growth of single-crystalline strontium titanate fibers using LHPG[J]. BISTUA Revista de la Facultad de Ciencias Básicas, 2015, 13(2): 24-28.
[37] [37] SHAW L B, BAYYA S, KIM W,et al. Fabrication of cladded single crystal fibers for all-crystalline fiber lasers[C]. Proceedings of 2018 OSA International Conference on Specialty Optical Fibers, July 2-5, 2018.
[38] [38] GEBRENICHAEL E, PONTING B, MAGANA R, et al. Single crystal fibers of cladded doped-YAG for high power laser and amplifier applications[J]. Additive Manufacturing and Strategic Technologies in Advanced Ceramics: Ceramic Transactions, 2016, 258: 83-96.
[39] [39] ZHOU Guang-li, E Shu-lin, DENG Wen-yuan, Development and application of optical fiber temperature sensor[J]. Optical Communication Technology, 2007, 6: 54-57.
[40] [40] YANG Yi-lun, YE Lin-hua, BAO Ren-jie,et al. Growth and characterization of Yb: Ho: YAG single crystal fiber[J]. Infrared Physics & Technology, 2018, 91: 85-89.
[41] [41] LO C Y, HUANG P L, CHOU T S, et al. Efficient Nd: Y3Al5O12 crystal fiber laser[J]. Japanese Journal of Applied Physics, 2002, 41(11A): L1228.
[42] [42] LAI C C, TSAI H J, HUANG Kuang-yao, et al. Cr 4+: YAG double-clad crystal fiber laser[J]. Optics Letters, 2008, 33(24): 2919-2921.
[43] [43] WANG S C, HUS C Y, YANG T T, et al. Laser-diode pumped glass-clad Ti: sapphire crystal fiber laser[J]. Optics Letters, 2016, 41(14): 3217-3220.
[44] [44] DILS R R. High-temperature optical fiber thermometer[J]. Journal of Applied Physics, 1983, 54(3): 1198-1201.
[45] [45] WANG An-bo,GOLLAPUDI S, MURPHY K A, et al. Sapphire-fiber-based intrinsic Fabry-Perot interferometer[J]. Optics Letters, 1992, 17(14): 1021-1023.
[46] [46] TIAN Zhi-peng, YU Zhi-hao, LIU Bo,et al. Sourceless optical fiber high temperature sensor[J]. Optics Letters, 2016, 41(2): 195-198.
[49] [49] ZHANG J, CHEN Y, PONTING B,et al. Highly efficient waveguided laser performance of diode pumped unclad Yb∶YAG crystalline fibre[J]. Laser Physics Letters, 2016, 13(7): 075101.
[50] [50] LI Yuan, JOHNSON E G, NIE C D,et al. Ho: YAG single crystal fiber laser: fabrication and optical characterization[J]. Optics Express, 2016, 22(12): 14896-14903.
[51] [51] LIU C N, WANG T H, ROU T S, et al. Higher gain of single-mode Cr-doped fibers employing optimized molten-zone growth[J]. Journal of Lightwave Technology, 2017, 35(22): 4930-4936.
[52] [52] WANG Tao, ZHANG Jian, ZHANG Na, et al. The characteristics of high-quality Yb: YAG single crystal fibers grown by a LHPG method and the effects of their discoloration[J]. RSC Advances, 2019, 9(39): 22567-22575.
[53] [53] LUH Y S, FEIGELSON R S, FEJER M M,et al. Ferroelectric domain structures in LiNbO3 single-crystal fibers[J]. Journal of Crystal Growth, 1986, 78(1): 135-143.
[55] [55] BURRUS C A, STONE J. Single-crystal fiber optical devices: a Nd: YAG fiber laser[J].Applied Physics Letters, 1975, 26(6): 318-320.
[56] [56] DIGONNET M, GAETA C, O’MEARA D,et al. Clad Nd: YAG fibers for laser applications[J]. Journal of Lightwave Technology, 1987, 5(5): 642-646.
[57] [57] HUANG K Y, HSU K Y, JHENG D Y,et al. Low-loss propagation in Cr4+: YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique[J]. Optics Express, 2008, 16(16): 12264-12271.
[58] [58] LAI C C, KE C P, LIU S K, et al. Efficient and low-threshold Cr4+: YAG double-clad crystal fiber laser[J]. Optics Letters, 2011, 36(6): 784-786.
[59] [59] GEBRENICHAEL E, PONTING B, MAGANA R,et al. Single crystal fibers of cladded doped-YAG for high power laser and amplifier applications[J]. Additive Manufacturing and Strategic Technologies in Advanced Ceramics: Ceramic Transactions, 2016, 258: 83-96.
[60] [60] JIANG Hong-min, CAO Zi-shu, YANG Rui-dong,et al. Synthesis and characterization of spinel MgAl2O4 thin film as sapphire optical fiber cladding for high temperature applications[J]. Thin Solid Films, 2013, 539: 81-87.
[61] [61] KIM W, BARRA S, SHAW B,et al. Hydrothermally cladded crystalline fibers for laser applications[J]. Optical Materials Express, 2019,9(6): 2716-2728.
[62] [62] CHANG R S, SENGUPTA S, SHAW L B,et al. Fabrication of laser materials by laser-heated pedestal growth[C]. SPIE, 1991,1410: 125-132
[63] [63] SOLEIMANI N, PONTING B, GEBRENICHAEL E,et al. Coilable single crystals fibers of doped-YAG for high power laser applications[J]. Journal of Crystal Growth, 2014, 393: 18-22
[64] [64] SHARP J H, ILLINGWORTH R, RUDDOCK I S,et al. Graded-index characteristics in single-crystal fibers[J]. Optics Letters, 1998, 23(2): 109-110.
[66] [66] BROWN C T, BONNER C L, WARBURTON T J,et al. Thermally bonded planar waveguide lasers[J]. Applied Physics Letters, 1997, 71(9): 1139-1141.
[67] [67] TER-GABRIELYAN N, FROMZEL V, MU Xiao-dong et al. High efficiency, resonantly diode pumped, double-clad, Er: YAG-core, waveguide laser[J]. Optics Express, 2012, 20(23): 25554-25561.
[68] [68] TER-GABRIELYAN N, FROMZEL V, MU Xiao-dong, et al. Resonantly pumped single-mode channel waveguide Er: YAG laser with nearly quantum defect limited efficiency[J]. Optics Letters, 2013, 38(14): 2431-2433.
[69] [69] MU Xiao-dong, MEISSNER S, MEISSNER H,et al. High efficiency Yb: YAG crystalline fiber-waveguide lasers[J]. Optics Letters, 2014, 39(21): 6331-6334.
[70] [70] LI D A, LEE H C, MIESSNER S K, et al. Laser performance and modeling of RE3+: YAG double-clad crystalline fiber waveguides[C]. SPIE,2018,10511: 105111Q.
[71] [71] TAYLOR G. A method of drawing metallic filaments and a discussion of their properties and uses[J]. Physical Review, 1924, 23(5): 655.
[72] [72] SNITZER E, TUMMINELLI R. SiO2-clad fibers with selectively volatilized soft-glass cores[J]. Optics Letters, 1989, 14(14): 757-759.
[73] [73] BALLATO J, SNITZER E. Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications[J]. Applied Optics, 1995, 34(30): 6848-6854.
[74] [74] PATRA A, SAHA S, ALENCAR M A R C,et al. Blue upconversion emission of Tm 3+ -Yb 3+ in ZrO2 nanocrystals: role of Yb 3+ ions[J]. Chemical Physics Letters, 2005, 407(4): 477-481.
[75] [75] MARTN A P, MATHER G C, MUNOZ F, et al. Design of oxy-fluoride glass-ceramics containing NaLaF4 nano-crystals[J]. Journal of Non-Crystalline Solids, 2010, 356(52-54): 3071-3079.
[76] [76] TICK P A, BORRELLI N F, REANEY I M. The relationship between structure and transparency in glass-ceramic materials[J]. Optical Materials, 2000, 15(1): 81-91.
[77] [77] PENG Wen-cai, FANG Zai-jin, MA Zhi-jun, et al. Enhanced upconversion emission in crystallization-controllable glass-ceramic fiber containing Yb3+-Er3+ codoped CaF2 nanocrystals[J]. Nanotechnology, 2016, 27(40): 405203
[78] [78] FANG Zai-jiang, XIAO Xu-sheng, WANG Xin,et al. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers[J]. Scientific Reports, 2017, 7: 44456.
[79] [79] YOO S, KALITA M P, BOYLAND A J,et al. Ytterbium doped nano-crystalline optical fiber for reduced photodarkening[C].CLEO/QELS: 2010 Laser Science to Photonic Applications. IEEE, 2010: 1-2.
[80] [80] KANG Shi-liang, FANG Zai-jin, HUANG Xiong-jian, et al. Precisely controllable fabrication of Er3+-doped glass ceramic fibers: novel mid-infrared fiber laser materials[J]. Journal of Materials Chemistry C, 2017, 5(18): 4549-4556.
[81] [81] HUANG Xiong-jian, FANG Zai-jin, PENG Zi-xing,et al. Formation, element-migration and broadband luminescence in quantum dot-doped glass fibers[J]. Optics Express, 2017, 25(17): 19691-19700.
[82] [82] PAUL M C, BYSAKH S, DAS S,et al. Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform[J]. Materials Science and Engineering: B, 2010, 175(2): 108-119.
[83] [83] HUANG Yi-chung, LU Yu-kuan, CHEN Cheng-Yi,et al. Broadband emission from Cr-doped fibers fabricated by drawing tower[J]. Optics Express, 2006, 14(19): 8492-8497.
[84] [84] BALLATO J,HAWKIN T, FOY P, et al. On the fabrication of all-glass optical fibers from crystals[J]. Journal of Applied Physics, 2009, 105(5): 053110.
[85] [85] DRAGIC P, LAW P C, BALLATO J,et al. Brillouin spectroscopy of YAG-derived optical fibers[J]. Optics Express, 2010, 18(10): 10055-10067.
[86] [86] DRAGIC P,BALLATO J. Characterisation of Raman gain spectra in Yb: YAG-derived optical fibres[J]. Electronics Letters, 2013, 49(14): 895-897.
[87] [87] DRAGIC P, HAWKIN T, FOY P,et al. Sapphire-derived all-glass optical fibres[J]. Nature Photonics, 2012, 6(9): 627
[88] [88] MANGOGNIA A, KUCERA C, GUERRIER J,et al. Spinel-derived single mode optical fiber[J]. Optical Materials Express, 2013, 3(4): 511-518.
[89] [89] DRAGIC P,KUCERA C, FURTICK J et al. Brillouin spectroscopy of a novel baria-doped silica glass optical fiber[J]. Optics Express, 2013, 21(9): 10924-10941.
[90] [90] CAVILLON M, KUCERA C J, HAWKINS T W,et al. Oxyfluoride core silica-based optical fiber with intrinsically low nonlinearities for high energy laser applications[J]. Journal of Lightwave Technology, 2017, 36(2): 284-291.
[91] [91] NASSAU K, SHIEVER J W, KRAUSE J T,et al. Preparation and properties of fused silica containing alumina[J]. Journal of the American Ceramic Society, 1975, 58(9-10): 461-461.
[92] [92] SIMPSON J R, MACCHESNEY J B. Optical fibres with an Al2O3-doped silicate core composition[J]. Electronics Letters, 1983, 19(7): 261-262.
[93] [93] DRAGIC P, BALLATO J, HAWKIN T, et al. Feasibility study of Yb: YAG-derived silicate fibers with large Yb content as gain media[J]. Optical Materials, 2012, 34(8): 1294-1298.
[94] [94] ZHENG Shu-pei, LI Jiang, YU Chun-lei, et al. Preparation and characterizations of Yb: YAG-derived silica fibers drawn by on-line feeding molten core approach[J]. Ceramics International, 2017, 43(7): 5837-5841.
[95] [95] ZHANG Ye-ming, WANG Wei-wei, LI Jiang,et al. Multi-component yttrium aluminosilicate (YAS) fiber prepared by melt-in-tube method for stable single-frequency laser[J]. Journal of the American Ceramic Society, 2019, 102(5): 2551-2557.
[96] [96] XIE Yong-yao, LIU Zhao-jun, CONG Zhen-hua,et al. All-fiber-integrated Yb: YAG-derived silica fiber laser generating 6 W output power[J]. Optics Express, 2019, 27(3): 3791-3798.
[97] [97] LIU Zhao-jun, XIE Yong-yao, CONG Zhen-hua,et al. 110 mW single-frequency Yb: YAG crystal-derived silica fiber laser at 1064 nm[J]. Optics Letters, 2019, 44(17): 4307-4310.
[98] [98] TANG Guo-wu, QIAN Guo-quan, WEI Lin, et al. Broadband 2 μm amplified spontaneous emission of Ho/Cr/Tm: YAG crystal derived all-glass fibers for mode-locked fiber laser applications[J]. Optics Letters, 2019, 44(13): 3290-3293.
[99] [99] BALLATO J,HAWKINS T, FOY P, et al. On the fabrication of all-glass optical fibers from crystals[J]. Journal of Applied Physics, 2019, 105(5): 053110.
[100] [100] BALLATO J,CAVILLON M, DRAGIC P, et al. A unified materials approach to mitigating optical nonlinearities in optical fiber I. Thermodynamics of optical scattering[J]. International Journal of Applied Glass Science, 2018, 9(2): 263-277.
[101] [101] GRANZOE N, SCHMIDT M A, CHANG W, et al. Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide[J]. Optics Express, 2013, 21(9): 10969-10977.
Get Citation
Copy Citation Text
LIU Zhao-jun, GAO Xi-bao, CONG Zhen-hua, SHAO Xian-bin, XIE Yong-yao, JIANG Ming-yuan, WANG Shang, ZHAO Zhi-gang, ZHANG Xing-yu. Crystal Fiber and Crystal-derived Fiber Preparation and Application: A Review[J]. Acta Photonica Sinica, 2019, 48(11): 1148003
Received: Sep. 18, 2019
Accepted: --
Published Online: Dec. 10, 2019
The Author Email: Zhao-jun LIU (zhaojunliu@sdu.edu.cn)