Journal of the Chinese Ceramic Society, Volume. 51, Issue 2, 520(2023)
Research Progress on Heterogeneous Catalytic Reaction Activity Descriptors for Two-Dimensional Materials
[1] [1] CHEN B W J, XU L, MAVRIKAKIS M. Computational methods in heterogeneous catalysis[J]. Chem Rev, 2021, 121(2): 1007-1048.
[2] [2] DENG D, NOVOSELOV K S, FU Q, et al. Catalysis with two-dimensional materials and their heterostructures[J]. Nat Nanotechnol, 2016, 11(3): 218-230.
[3] [3] LIU L, CORMA A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles[J]. Chem Rev, 2018, 118(10): 4981-5079.
[4] [4] LOW J, YU J, JARONIEC M, et al. Heterojunction photocatalysts[J]. Adv Mater, 2017, 29(20): 1601694.
[5] [5] SEH Z W, KIBSGAARD J, DICKENS C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321).
[6] [6] WANG A, LI J, ZHANG T. Heterogeneous single-atom catalysis[J]. Nat Rev Chem, 2018, 2(6): 65-81.
[7] [7] ZOU X, ZHANG Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chem Soc Rev, 2015, 44(15): 5148-5180.
[11] [11] ZHENG Y, JIAO Y, JARONIEC M, et al. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory[J]. Angew Chem-Intl Ed, 2015, 54(1): 52-65.
[12] [12] GREELEY J. Theoretical heterogeneous catalysis: Scaling relationships and computational catalyst design. In Annual review of chemical and biomolecular engineering[C]. vol 7, Prausnitz, J. M., Ed. 2016, 7: 605-635.
[13] [13] GREELEY J, JARAMILLO T F, BONDE J, et al. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution[J]. Nat Mater, 2006, 5(11): 909-913.
[14] [14] ZHAO Z J, LIU S, ZHA S, et al. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors[J]. Nat Rev Mater, 2019, 4(12): 792-804.
[15] [15] . SHAO Y H, GAN Z T, EPIFANOVSKY E, et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package[J]. Molecul Phys, 2015, 113(2): 184-215.
[16] [16] VANDEVONDELE J, KRACK M, MOHAMED F, et al. Quickstep: Fast and accurate density functional calculations using a mixed gaussian and plane waves approach[J]. Computer Phys Commun, 2005, 167(2): 103?128.
[17] [17] KUEHNE T D, IANNUZZI M, DEL BEN M, et al. CP2K: An electronic structure and molecular dynamics software package- quickstep: efficient and accurate electronic structure calculations[J]. J Chem Phys, 2020, 152(19): 194103.
[18] [18] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: Ideas, illustrations and the CASTEP code[J]. J Phys-Condensed Matter, 2002, 14(11): 2717-2744.
[19] [19] KRESSE F. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B, Condensed Matter, 1996, 54(16): 11169-11186.
[20] [20] KRESSE G, FURTHM?LLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput Mater Sci, 1996, 6(1): 15-50.
[21] [21] CHATTOT R, LE BACQ O, BEERMANN V, et al. Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis[J]. Nat Mater, 2018, 17(9): 827-833.
[22] [22] SIGMAN M S, HARPER K C, BESS E N, et al. The development of multidimensional analysis tools for asymmetric catalysis and beyond[J]. Account Chem Res, 2016, 49(6): 1292-1301.
[23] [23] CHATTOT R, MARTENS I, SCOHY M, et al. Disclosing Pt-bimetallic alloy nanoparticle surface lattice distortion with electrochemical probes[J]. ACS Energy Lett, 2020, 5(1): 162-169.
[24] [24] GRACIA J. Itinerant spins and bond lengths in oxide electrocatalysts for oxygen evolution and reduction reactions[J]. J Phys Chem C, 2019, 123(15): 9967-9972.
[25] [25] MAO X, WANG L, XU Y, et al. Computational high-throughput screening of alloy nanoclusters for electrocatalytic hydrogen evolution[J]. npj Comput Mater, 2021, 7(1): 46.
[26] [26] ROLING L T, ABILD-PEDERSEN F. Structure-sensitive scaling relations: ddsorption energies from surface site stability[J]. Chem Cat Chem, 2018, 10(7): 1643-1650.
[27] [27] ROSSI K, ASARA G G, BALETTO F. A genomic characterisation of monometallic nanoparticles[J]. Phys Chem Chem Phys, 2019, 21(9): 4888-4898.
[28] [28] SUN X, ZHENG J, GAO Y, et al. Machine-learning-accelerated screening of hydrogen evolution catalysts in mbenes materials[J]. Appl Surface Sci, 2020, 526: 146522.
[29] [29] SUN F, LI F, TANG Q. Spin state as a participator for demetalation durability and activity of Fe?N?C electrocatalysts[J]. J Phys Chem C, 2022, 126(31): 13168-13181.
[30] [30] HONG W T, RISCH M, STOERZINGER K A, et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis[J]. Energy Environ Sci, 2015, 8(5): 1404-1427.
[31] [31] KATTEL S, WANG G A. density functional theory study of oxygen reduction reaction on Me?N4 (Me=Fe, Co, or Ni) clusters between graphitic pores[J]. J Mater Chem A, 2013, 1(36): 10790-10797.
[32] [32] LIU X, JIAO Y, ZHENG Y, et al. A computational study on Pt and Ru dimers supported on graphene for the hydrogen evolution reaction: New insight into the alkaline mechanism[J]. J Mater Chem A, 2019, 7(8): 3648-3654.
[33] [33] MEDFORD A J, VOJVODIC A, HUMMELSHOJ J S, et al. From the sabatier principle to a predictive theory of transition-metal heterogeneous catalysis[J]. J Catal, 2015, 328: 36?42.
[34] [34] VOJVODIC A, HELLMAN A, RUBERTO C, et al. From electronic structure to catalytic activity: A single descriptor for adsorption and reactivity on transition-metal carbides[J]. Phys Rev Lett, 2009, 103(14): 146103.
[35] [35] WANG H, TSAI C, KONG D, et al. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution[J]. Nano Res, 2015, 8(2): 566?575.
[36] [36] BAGGER A, JU W, SOFIA VARELA A, et al. Electrochemical CO2 reduction: A classification problem[J]. Chem Phys Chem, 2017, 18(22): 3266-3273.
[37] [37] MAN I C, SU H Y, CALLE-VALLEJO F, et al. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. Chem Cat Chem, 2011, 3(7): 1159-1165.
[38] [38] SUBBARAMAN R, TRIPKOVIC D, CHANG K C, et al. Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts[J]. Nat Mater, 2012, 11(6): 550-557.
[39] [39] WU J, LI J H, YU Y X. Single Nb or W atom-embedded BP monolayers as highly selective and stable electrocatalysts for nitrogen fixation with low-onset potentials[J]. ACS Appl Mater Interfaces, 2021, 13(8): 10026-10036.
[40] [40] FOPPA L, GHIRINGHELLI L M, GIRGSDIES F, et al. Materials genes of heterogeneous catalysis from clean experiments and artificial intelligence[J]. Mrs Bull, 2021, 46(11): 1016-1026.
[41] [41] CAO X, CHEN C, MIN Y, et al. Prediction of bimetal embedded in two-dimensional materials for CO2 reduction electrocatalysis with a new integrated descriptor[J]. Phys Chem Chem Phys, 2021, 23(46): 26241-26249.
[42] [42] LIU C Y, ZHANG S, MARTINEZ D, et al. Using statistical learning to predict interactions between single metal atoms and modified MgO(100) supports[J]. npj Comput Mater, 2020, 6(1): 102.
[43] [43] FALIVENE L, CAO Z, PETTA A, et al. Towards the online computer-aided design of catalytic pockets[J]. Nat Chem, 2019, 11(10): 872-879.
[44] [44] LI Z, WANG S, CHIN W S, et al. High-throughput screening of bimetallic catalysts enabled by machine learning[J]. J Mater Chem A, 2017, 5(46): 24131-24138.
[49] [49] ANDERSEN M, REUTER K. Adsorption enthalpies for catalysis modeling through machine-learned descriptors[J]. Account Chem Res, 2021, 54(12): 2741-2749.
[50] [50] OUYANG R, AHMETCIK E, CARBOGNO C, et al. Simultaneous learning of several materials properties from incomplete databases with multi-task SISSO[J]. J Phys-Mater, 2019, 2(2): 024002.
[51] [51] OUYANG R, CURTAROLO S, AHMETCIK E, et al. SiISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates[J]. Phys Rev Mater, 2018, 2(8): 083802.
[52] [52] TIBSHIRANI R. Regression shrinkage and selection via the LASSO: A retrospective[J]. J Royal Statist Soc Series B-Statist Methodol, 2011, 73: 273-282.
[53] [53] SINTHIKA S, WAGHMARE U V, THAPA R. Structural and electronic descriptors of catalytic activity of graphene-based materials: first-principles theoretical analysis[J]. Small, 2018, 14(10): 1703609.
[54] [54] LIU K, FU J, LIN Y, et al. Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction[J]. Nat Commun, 2022, 13(1): 2075.
[56] [56] YANG G, WANG C M, LI Y, et al. Simple structure descriptors quantifying the diffusion of ethene in small-pore zeolites: insights from molecular dynamic simulations[J]. Inorg Chem Front, 2022, 9(8): 1590-1602.
[57] [57] WANG X Y, YE R P, DUYAR M S, et al. Design of mesoporous ZnCoSiOx hollow nanoreactors with specific spatial distribution of metal species for selective CO2 hydrogenation[J]. Nano Res, 2021. Doi: 10.1007/s12274-021-4013-8.
[58] [58] GUO S, ZHANG G M, HAN Z K, et al. Synergistic effects of ternary PdO-CeO2-OmS2 catalyst afford high catalytic performance and stability in the reduction of no with CO[J]. ACS Appl Mater Interfaces, 2021, 13(1): 622-630.
[59] [59] . LI J H, YU Y X. How do oxygen vacancies influence the catalytic performance of two-dimensional Nb2O5 in lithium- and sodium-oxygen batteries?[J]. Chem Sus Chem, 2021, 14(24): 5488-5498.
[60] [60] HAMMER B, NRSKOV J K. Why gold is the noblest of all the metals[J]. Nature, 1995, 376(6537): 238-240.
[61] [61] N?RSKOV J K, ABILD-PEDERSEN F, STUDT F, et al. Density functional theory in surface chemistry and catalysis[J]. Proc Nation Academy Sci USA, 2011, 108(3): 937-943.
[62] [62] CHENG Q, HAN S, MAO K, et al. Co nanoparticle embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability[J]. Nano Energy, 2018, 52: 485-493.
[63] [63] LI W, HU Z Y, ZHANG Z, et al. Nano-single crystal coalesced PtCu nanospheres as robust bifunctional catalyst for hydrogen evolution and oxygen reduction reactions[J]. J Catal, 2019, 375: 164-170.
[64] [64] MUN Y, LEE S, KIM K, et al. Versatile strategy for tuning ORR activity of a single Fe?N4 site by controlling electron-withdrawing/ donating properties of a carbon plane[J]. J Amn Chem Soc, 2019, 141(15): 6254-6262.
[65] [65] PARK S A, LIM H, KIM Y T. Enhanced oxygen reduction reaction activity due to electronic effects between ag and Mn3O4 in alkaline media[J]. ACS Catal, 2015, 5(7): 3995-4002.
[66] [66] STAMENKOVIC V R, FOWLER B, MUN B S, et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability[J]. Science, 2007, 315(5811): 493-497.
[67] [67] WU J, YANG H. Platinum-based oxygen reduction electrocatalysts[J]. Account Chem Res, 2013, 46(8): 1848-1857.
[68] [68] CHEN S, HUANG H, JIANG P, et al. Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media[J]. ACS Catal, 2020, 10(2): 1152-1160.
[69] [69] DUAN Y, SUN S, SUN Y, et al. Mastering surface reconstruction of metastable spinel oxides for better water oxidation[J]. Adv Mater, 2019, 31(12): 1807898.
[70] [70] RETUERTO M, PASCUAL L, CALLE-VALLEJO F, et al. Na-doped ruthenium perovskite electrocatalysts with improved oxygen evolution activity and durability in acidic media[J]. Nat Commun, 2019, 10: 2041.
[71] [71] WANG Z, LIN Z, DENG J, et al. Elevating the d-band center of six-coordinated octahedrons in Co9S8 through Fe-incorporated topochemical deintercalation[J]. Adv Energy Mater, 2021, 11(5): 2003023.
[72] [72] ZHANG J, QIAN J, RAN J, et al. Engineering lower coordination atoms onto NiO/Co3O4 heterointerfaces for boosting oxygen evolution reactions[J]. ACS Catal, 2020, 10(21): 12376-12384.
[73] [73] ZHOU Y, GAO G, KANG J, et al. Transition metal-embedded two-dimensional C3N as a highly active electrocatalyst for oxygen evolution and reduction reactions[J]. J Mater Chem A, 2019, 7(19): 12050-12059.
[74] [74] CHEN Z, SONG Y, CAI J, et al. Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis[J]. Angew Chem Int Ed, 2018, 57(18): 5076-5080.
[75] [75] DENG S, LUO M, AI C, et al. Synergistic doping and intercalation: Realizing deep phase modulation on MoS2 arrays for high-efficiency hydrogen evolution reaction[J]. Angew Chem-Int Ed, 2019, 58(45): 16289-16296.
[76] [76] PAN Y, SUN K, LIN Y, et al. Electronic structure and d-band center control engineering over M-doped cop (M=Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production[J]. Nano Energy, 2019, 56: 411-419.
[77] [77] WEI C, SUN Y, SCHERER G G, et al. Surface composition dependent ligand effect in tuning the activity of nickel-copper bimetallic electrocatalysts toward hydrogen evolution in alkaline[J]. J Am Chem Soc, 2020, 142(17): 7765-7775.
[78] [78] YU F, GAO Y, LANG Z, et al. Electrocatalytic performance of ultrasmall Mo2C affected by different transition metal dopants in hydrogen evolution reaction[J]. Nanoscale, 2018, 10(13): 6080-6087.
[79] [79] HAO J, ZHU H, LI Y, et al. Tuning the electronic structure of AuNi homogeneous solid-solution alloy with positively charged Ni center for highly selective electrochemical CO2 reduction[J]. Chem Eng J, 2021, 404: 126523.
[80] [80] PAN F, LI B, SARNELLO E, et al. Pore-edge tailoring of single-atom iron-nitrogen sites on graphene for enhanced CO2 reduction[J]. ACS Catal, 2020, 10(19): 10803-10811.
[81] [81] XIONG B, YANG Y, LIU J, et al. Electrochemical conversion of CO2 to syngas over Cu-M (M=Cd, Zn, Ni, Ag and Pd) bimetal catalysts[J]. Fuel, 2021, 304: 121341.
[82] [82] LUO T, LIU K, FU J, et al. Tandem catalysis on adjacent active motifs of copper grain boundary for efficient CO2 electroreduction toward C2 products[J]. J Energy Chem, 2022, 70: 219-223.
[83] [83] REN M, GUO X, HUANG S. Coordination-tuned Fe single-atom catalyst for efficient CO2 electroreduction: The power of B atom[J]. Chem Eng J, 2022, 433: 134270.
[84] [84] GUO H, LI L, WANG X, et al. Theoretical investigation on the single transition-metal atom-decorated defective MoS2 for electrocatalytic ammonia synthesis[J]. ACS Appl Mater Interfaces, 2019, 11(40): 36506-36514.
[85] [85] TONG W, HUANG B, WANG P, et al. Exposed facet-controlled N2 electroreduction on distinct Pt3Fe nanostructures of nanocubes, nanorods and nanowires[J]. Natl Sci Rev, 2021, 8(1): nwaa088.
[86] [86] YU B, LI H, WHITE J, et al. Tuning the catalytic preference of ruthenium catalysts for nitrogen reduction by atomic dispersion[J]. Adv Funct Mater, 2020, 30(6): 1905665.
[87] [87] ZHENG G, LI Y, QIAN X, et al. High-throughput screening of a single-atom alloy for electroreduction of dinitrogen to ammonia[J]. ACS Appl Mater Interfaces, 2021, 13(14): 16336-16344.
[88] [88] LI J H, WU J, YU Y X. Singlet oxygen vs. Triplet oxygen: Functions of 2d-MoO3 catalysts in conquering catastrophic parasitic-reactions in lithium- and sodium-oxygen batteries[J]. J Mater Chem A, 2021, 9(16): 10186-10198.
[89] [89] LEE H, GWON O, CHOI K, et al. Enhancing bifunctional electrocatalytic activities via metal d-band center lift induced by oxygen vacancy on the subsurface of perovskites[J]. ACS Catal, 2020, 10(8): 4664-4670.
[90] [90] WU J, LI J H, YU Y X Theoretical exploration of electrochemical nitrate reduction reaction activities on transition-metal-doped h-BP[J]. J Phys Chem Lett, 2021, 12(16): 3968-3975.
[91] [91] WU D, ZHANG J, CHENG M J, et al. Machine learning investigation of supplementary adsorbate influence on copper for enhanced electrochemical CO2 reduction performance[J]. J Phys Chem C, 2021, 125(28): 15363-15372.
[92] [92] CHEN T, GUESTRIN C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C]//Association for Computing Machinery: San Francisco, California, USA, 2016: 785-794.
[93] [93] XIN H, VOJVODIC A, VOSS J, et al. Effects of d-band shape on the surface reactivity of transition-metal alloys[J]. Phys Rev B, 2014, 89(11): 115114.
[94] [94] VISIKOVSKIY A, MATSUMOTO H, MITSUHARA K, et al. Electronic d-band properties of gold nanoclusters grown on amorphous carbon[J]. Phys Rev B, 2011, 83(16): 165428.
[95] [95] BRONSTED J N. Acid and basic catalysis[J]. Chem Rev, 1928, 5(3): 231-338.
[96] [96] EVANS M G, POLANYI M. Inertia and driving force of chemical reactions[J]. Transact Faraday Soc, 1938, 34: 11-24.
[97] [97] LOGADOTTIR A, ROD T H, N?RSKOV J K, et al. The br?nsted-evans-polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts[J]. J Catal, 2001, 197(2): 229-231.
[98] [98] WANG S, TEMEL B, SHEN J, et al. Universal br?nsted-evans-polanyi relations for C-C, C-O, C-N, N-O, N-N, and O-O dissociation reactions[J]. Catal Lett, 2011, 141(3): 370-373.
[99] [99] GAO Z Y, YANG W J, DING X L, et al. Support effects on adsorption and catalytic activation of O2 in single atom iron catalysts with graphene-based substrates[J]. Phys Chem Chem Phys, 2018, 20(10): 7333-7341.
[100] [100] EICHELBAUM M, HAEVECKER M, HEINE C, et al. The electronic factor in alkane oxidation catalysis[J]. Angew Chem-Intl Ed, 2015, 54(10): 2922-2926.
[101] [101] SHEN X, PAN Y, LIU B, et al. More accurate depiction of adsorption energy on transition metals using work function as one additional descriptor[J]. Phys Chem Chem Phys, 2017, 19(20): 12628-12632.
[102] [102] FULLER J, FORTUNELLI A, GODDARD W A, et al. Discovery of dramatically improved ammonia synthesis catalysts through hierarchical high-throughput catalyst screening of the Fe(211) surface[J]. Chem Mater, 2020, 32(23): 9914-9924.
[103] [103] XIA D, YANG X, XIE L, et al. Direct growth of carbon nanotubes doped with single atomic Fe-N4 active sites and neighboring graphitic nitrogen for efficient and stable oxygen reduction electrocatalysis[J]. Adv Funct Mater, 2019, 29(49): 1906174.
[104] [104] ZERADJANIN A R, VIMALANANDAN A, POLYMEROS G, et al. Balanced work function as a driver for facile hydrogen evolution reaction-comprehension and experimental assessment of interfacial catalytic descriptor[J]. Phys Chem Chem Phys, 2017, 19(26): 17019-17027.
[105] [105] TRASATTI S. Work function, electronegativity, and electrochemical behaviour of metals: Iii. Electrolytic hydrogen evolution in acid solutions[J]. J Electroanal Chem Interfacial Electrochem, 1972, 39(1): 163-184.
[106] [106] JIA J F, INOUE K, HASEGAWA Y, et al. Variation of the local work function at steps on metal surfaces studied with STM[J]. Phys Rev B, 1998, 58(3): 1193-1196.
[107] [107] WANG X, JIANG S, HU W, et al. Quantitatively determining surface-adsorbate properties from vibrational spectroscopy with interpretable machine learning[J]. J Am Chem Soc, 2022, 144(35): 16069-16076.
[108] [108] TAO H B, FANG L, CHEN J, et al. Identification of surface reactivity descriptor for transition metal oxides in oxygen evolution reaction[J]. J Am Chem Soc, 2016, 138(31): 9978-9985.
[109] [109] GUO X, GU J, LIN S, et al. Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts[J]. J Am Chem Soc, 2020, 142(12): 5709-5721.
[110] [110] XU H X, CHENG D J, CAO D P, et al. A universal principle for a rational design of single-atom electrocatalysts[J]. Nat Catal, 2018, 1(5): 339-348.
[111] [111] LI J, LOPEZ S A. A look inside the black box of machine learning photodynamics simulations[J]. Account Chem Res, 2022, 55(14): 1972-1984.
[112] [112] PENG J, SCHWALBE-KODA D, AKKIRAJU K, et al. Human- and machine-centred designs of molecules and materials for sustainability and decarbonization[J]. Nat Rev Mater, 2022, 7: 991-1009.
Get Citation
Copy Citation Text
LI Jiahui, LIAN Cheng, LIU Honglai. Research Progress on Heterogeneous Catalytic Reaction Activity Descriptors for Two-Dimensional Materials[J]. Journal of the Chinese Ceramic Society, 2023, 51(2): 520
Special Issue:
Received: Oct. 28, 2022
Accepted: --
Published Online: Mar. 11, 2023
The Author Email: Jiahui LI (jiahuili@ecust.edu.cn)