Opto-Electronic Advances, Volume. 7, Issue 9, 240040-1(2024)

An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons

Weihan Li1,2, Jia Chen1,2, Shizhao Gao1,2, Lingyun Niu1,2, Jiaxuan Wei1,2, Ruosong Sun1,2, Yaqi Wei1,2, Wenxuan Tang1,2、*, and Tie Jun Cui1,2、**
Author Affiliations
  • 1State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
  • 2Institute of Electromagnetic Space, Southeast University, Nanjing 210096, China
  • show less
    References(62)

    [1] WL Barnes, A Dereux, TW Ebbesen. Surface plasmon subwavelength optics. Nature, 424, 824-830(2003).

    [2] FJ Garcia-Vidal, L Martín-Moreno, JB Pendry. Surfaces with holes in them: new plasmonic metamaterials. J Opt A Pure Appl Opt, 7, S97-S101(2005).

    [3] QQ Gan, Z Fu, YJ Ding et al. Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures. Phys Rev Lett, 100, 256803(2008).

    [4] XP Shen, TJ Cui, D Martin-Cano et al. Conformal surface plasmons propagating on ultrathin and flexible films. Proc Natl Acad Sci USA, 110, 40-45(2013).

    [5] HF Ma, XP Shen, Q Cheng et al. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photon Rev, 8, 146-151(2014).

    [6] A Kianinejad, ZN Chen, CW Qiu. Low-loss spoof surface plasmon slow-wave transmission lines with compact transition and high isolation. IEEE Trans Microw Theory Tech, 64, 3078-3086(2016).

    [7] PH He, HC Zhang, XX Gao et al. A novel spoof surface plasmon polariton structure to reach ultra-strong field confinements. Opto-Electron Adv, 2, 190001(2019).

    [8] M Wang, S Sun, HF Ma et al. Supercompact and ultrawideband surface plasmonic bandpass filter. IEEE Trans Microw Theory Tech, 68, 732-740(2020).

    [9] LF Ye, Y Chen, ZY Wang et al. Compact spoof surface plasmon polariton waveguides and notch filters based on meander-strip units. IEEE Photonics Technol Lett, 33, 135-138(2021).

    [10] YQ Liu, KD Xu, JX Li et al. Millimeter-wave E-plane waveguide bandpass filters based on spoof surface plasmon polaritons. IEEE Trans Microw Theory Tech, 70, 4399-4409(2022).

    [11] XY Liu, Y Lei, X Zheng et al. Reconfigurable spoof plasmonic coupler for dynamic switching between forward and backward propagations. Adv Mater Technol, 7, 2200129(2022).

    [12] LY Niu, PH He, Y Fan et al. Gain‐associated nonlinear phenomenon in single‐conductor odd‐mode plasmonic metamaterials. Laser Photon Rev, 16, 2100619(2022).

    [13] XX Gao, JJ Zhang, Y Luo et al. Reconfigurable parametric amplifications of spoof surface plasmons. Adv Sci, 8, 2100795(2021).

    [14] LL Liu, L Wu, JJ Zhang et al. Backward phase matching for second harmonic generation in negative-index conformal surface plasmonic metamaterials. Adv Sci, 5, 1800661(2018).

    [15] J Zhang, HC Zhang, XX Gao et al. Integrated spoof plasmonic circuits. Sci Bull, 64, 843-855(2019).

    [16] HC Zhang, LP Zhang, PH He et al. A plasmonic route for the integrated wireless communication of subdiffraction-limited signals. Light Sci Appl, 9, 113(2020).

    [17] WX Tang, HC Zhang, HF Ma et al. Concept, theory, design, and applications of spoof surface plasmon polaritons at microwave frequencies. Adv Opt Mater, 7, 1800421(2019).

    [18] MB Pu, XL Ma, YH Guo et al. Theory of microscopic meta-surface waves based on catenary optical fields and dispersion. Opt Express, 26, 19555-19562(2018).

    [19] YH Guo, ZJ Zhang, MB Pu et al. Spoof plasmonic metasurfaces with catenary dispersion for two-dimensional wide-angle focusing and imaging. iScience, 21, 145-156(2019).

    [20] XG Luo, MB Pu, YH Guo et al. Catenary functions meet electromagnetic waves: opportunities and promises. Adv Opt Mater, 8, 2001194(2020).

    [21] JL Gomez-Tornero, FD Quesada-Pereira, A Alvarez-Melcon. Analysis and design of periodic leaky-wave antennas for the millimeter waveband in hybrid waveguide-planar technology. IEEE Trans Antennas Propag, 53, 2834-2842(2005).

    [22] DR Jackson, C Caloz, T Itoh. Leaky-wave antennas. Proc IEEE, 100, 2194-2206(2012).

    [23] M Wang, HF Ma, WX Tang et al. A dual-band electronic-scanning leaky-wave antenna based on a corrugated microstrip line. IEEE Trans Antennas Propag, 67, 3433-3438(2019).

    [24] TR Cameron, GV Eleftheriades. Experimental validation of a wideband metasurface for wide-angle scanning leaky-wave antennas. IEEE Trans Antennas Propag, 65, 5245-5256(2017).

    [25] AJ Mackay, GV Eleftheriades. Meandered and dispersion-enhanced planar leaky-wave antenna with fast beam scanning. IEEE Antennas Wirel Propag Lett, 20, 1596-1600(2021).

    [26] DK Karmokar, KP Esselle, TS Bird. Wideband microstrip leaky-wave antennas with two symmetrical side beams for simultaneous dual-beam scanning. IEEE Trans Antennas Propag, 64, 1262-1269(2016).

    [27] HY Chen, H Ma, YF Li et al. Wideband frequency scanning spoof surface plasmon polariton planar antenna based on transmissive phase gradient metasurface. IEEE Antennas Wirel Propag Lett, 17, 463-467(2018).

    [28] J Wang, L Zhao, ZC Hao et al. Wide-angle frequency beam scanning antenna based on the higher-order modes of spoof surface plasmon polariton. IEEE Trans Antennas Propag, 68, 7652-7657(2020).

    [29] SK Ge, QF Zhang, AK Rashid et al. Analysis of asymmetrically corrugated goubau-line antenna for endfire radiation. IEEE Trans Antennas Propag, 67, 7133-7138(2019).

    [30] HR Zu, B Wu, YT Zhao et al. Dual-band antenna with large beam steering angle incorporating endfire and frequency scanning modes using double-layer SSPPs structure. IEEE Trans Antennas Propag, 70, 46-55(2022).

    [31] A Sarkar, S Lim. Annular surface plasmon polariton-based frequency-scanning leaky-wave antenna for full azimuth coverage. IEEE Trans Antennas Propag, 70, 180-188(2022).

    [32] JY Yin, J Ren, Q Zhang et al. Frequency-controlled broad-angle beam scanning of patch array fed by spoof surface plasmon polaritons. IEEE Trans Antennas Propag, 64, 5181-5189(2016).

    [33] G Zhang, QF Zhang, YF Chen et al. High-scanning-rate and wide-angle leaky-wave antennas based on glide-symmetry goubau line. IEEE Trans Antennas Propag, 68, 2531-2540(2020).

    [34] JY Lau, SV Hum. Reconfigurable transmitarray design approaches for beamforming applications. IEEE Trans Antennas Propag, 60, 5679-5689(2012).

    [35] W Hong, ZH Jiang, C Yu et al. Multibeam antenna technologies for 5G wireless communications. IEEE Trans Antennas Propag, 65, 6231-6249(2017).

    [36] I Ahmed, H Khammari, A Shahid et al. A survey on hybrid beamforming techniques in 5G: architecture and system model perspectives. IEEE Commun Surv Tutorials, 20, 3060-3097(2018).

    [37] DX Zhao, P Gu, JC Zhong et al. Millimeter-wave integrated phased arrays. IEEE Trans Circuits Syst I Regul Pap, 68, 3977-3990(2021).

    [38] TS Rappaport, F Gutierrez, E Ben-Dor et al. Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Trans Antennas Propag, 61, 1850-1859(2013).

    [39] LB Huang, X Li, WT Wan et al. Adaptive FDA radar transmit power allocation for target detection enhancement in clutter environment. IEEE Trans Veh Technol, 72, 11111-11121(2023).

    [40] HL Wang, HF Ma, M Chen et al. A reconfigurable multifunctional metasurface for full‐space control of electromagnetic waves. Adv Funct Mater, 31, 2100275(2021).

    [41] J Wang, J Kühne, T Karamanos et al. All‐dielectric crescent metasurface sensor driven by bound states in the continuum. Adv Funct Mater, 31, 2104652(2021).

    [42] XY Wu, HY Feng, F Wan et al. An Ultrathin, Fast-Response, Large-Scale Liquid-Crystal-Facilitated Multi-Functional Reconfigurable Metasurface for Comprehensive Wavefront Modulation. Adv Mater, 36, 2402170(2024).

    [43] TH Liu, WH Li, YY Meng et al. Six‐mode orbital angular momentum generator enabled by helicity‐assisted full‐space metasurface with flexible manipulation of phase, polarization, and spatial information. Adv Opt Mater, 10, 2102638(2022).

    [44] Renzo M Di, A Zappone, M Debbah et al. Smart radio environments empowered by reconfigurable intelligent surfaces: how it works, state of research, and the road ahead. IEEE J Sel Areas Commun, 38, 2450-2525(2020).

    [45] QQ Wu, R Zhang. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans Wirel Commun, 18, 5394-5409(2019).

    [46] TJ Cui, MQ Qi, X Wan et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl, 3, e218(2014).

    [47] RC Zhu, JF Wang, TS Qiu et al. Direct field-to-pattern monolithic design of holographic metasurface via residual encoder-decoder convolutional neural network. Opto-Electron Adv, 6, 220148(2023).

    [48] C Qian, B Zheng, YC Shen et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat Photonics, 14, 383-390(2020).

    [49] Q Ma, GD Bai, HB Jing et al. Smart metasurface with self-adaptively reprogrammable functions. Light Sci Appl, 8, 98(2019).

    [50] ZJ Luo, XY Ren, L Zhou et al. A high‐performance nonlinear metasurface for spatial‐wave absorption. Adv Funct Mater, 32, 2109544(2022).

    [51] X Wan, JW Wang, ZA Huang et al. Space–time–frequency modulation mechanisms of monochromatic and nonmonochromatic electromagnetic waves on a digital programmable transmission metasurface. Adv Funct Mater, 32, 2107557(2022).

    [52] M Ouyang, FF Gao, YC Wang et al. Computer vision-aided reconfigurable intelligent surface-based beam tracking: prototyping and experimental results. IEEE Trans Wirel Commun, 22, 8681-8693(2023).

    [53] WH Li, Q Ma, C Liu et al. Intelligent metasurface system for automatic tracking of moving targets and wireless communications based on computer vision. Nat Commun, 14, 989(2023).

    [54] B Wang, JH Liu, SJ Zhu et al. A dual-input moving object detection method in remote sensing image sequences via temporal semantics. Remote Sens, 15, 2230(2023).

    [55] N Nigam, DP Singh, J Choudhary. A review of different components of the intelligent traffic management system (ITMS). Symmetry, 15, 583(2023).

    [56] D Sha, JQ Gao, D Yang et al. Calibrating stochastic traffic simulation models for safety and operational measures based on vehicle conflict distributions obtained from aerial and traffic camera videos. Accid Anal Prev, 179, 106878(2023).

    [57] GS Kong, HF Ma, BG Cai et al. Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide. Sci Rep, 6, 29600(2016).

    [58] Z Wang, SQ Li, XQ Zhang et al. Excite spoof surface plasmons with tailored wavefronts using high‐efficiency terahertz metasurfaces. Adv Sci, 7, 2000982(2020).

    [59] A Bansal, CJ Panagamuwa, WG Whittow. Millimeter-wave beam steerable slot array antenna using an inter-digitated capacitor based corrugated SIW. IEEE Trans Antennas Propag, 70, 11761-11770(2022).

    [60] Z Wang, Y Dong. Amplitude and frequency modulated leaky wave antenna for reconfigurable intelligent radiation. IEEE Trans Antennas Propag, 72, 2189-2201(2024).

    [61] D Yang, S Nam. Frequency reconfigurable beam scanning squarely modulated reactance surface antenna with period and surface reactance control. IEEE Access, 11, 72552-72561(2023).

    [62] SZ Wang, Z Li, B Wei et al. A Ka-band circularly polarized fixed-frequency beam-scanning leaky-wave antenna based on groove gap waveguide with consistent high gains. IEEE Trans Antennas Propag, 69, 1959-1969(2021).

    Tools

    Get Citation

    Copy Citation Text

    Weihan Li, Jia Chen, Shizhao Gao, Lingyun Niu, Jiaxuan Wei, Ruosong Sun, Yaqi Wei, Wenxuan Tang, Tie Jun Cui. An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons[J]. Opto-Electronic Advances, 2024, 7(9): 240040-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Apr. 11, 2024

    Accepted: Jun. 17, 2024

    Published Online: Nov. 11, 2024

    The Author Email: Tang Wenxuan (WXTang), Cui Tie Jun (TJCui)

    DOI:10.29026/oea.2024.240040

    Topics