Optoelectronics Letters, Volume. 18, Issue 9, 519(2022)
Photoabsorption analysis of metal nanoparticles by hybrid quantum/classical scheme
[1] [1] FARAMARZI V, AHMADI V, HEIDARI M, et al. Interband plasmon-enhanced optical absorption of DNA nucleobases through the graphene nanopore[J]. Optics letters, 2022, 47(1):194-197.
[2] [2] COOMAR A, ARNTSEN C, LOPATA K A, et al. Near-field:a finite-difference time-dependent method for simulation of electrodynamics on small scales[J]. The journal of chemical physics, 2011, 135(8):084121.
[3] [3] GHORBANZADEH M, MORAVEJ-FARSHI M K, DARBARI S. Designing a plasmonic optophoresis system for trapping and simultaneous sorting/counting of micro-and nano-particles[J]. Journal of lightwave technology, 2015, 33(16):3453-3460.
[4] [4] BELKIN M, CHAO S H, JONSSON M P, et al. Plasmonic nanopores for trapping, controlling displacement, and sequencing of DNA[J]. ACS nano, 2015, 9(11): 10598-10611.
[5] [5] YIN P, LIN Q, RUAN Y, et al. Investigation of multiple metal nanoparticles near-field coupling on the surface by discrete dipole approximation method[J]. Optoelectronics letters, 2021, 17(5):257-261.
[6] [6] GAO Y, NEUHAUSER D. Dynamical quantum-electrodynamics embedding:combining time-dependent density functional theory and the near-field method[J]. The journal of chemical physics, 2012, 137(7):074113.
[7] [7] SAKKO A, ROSSI T P, NEIMINEN R M. Dynamical coupling of plasmons and molecular excitations by hybrid quantum/classical calculations:time-domain approach[J]. Journal of physics:condensed matter, 2014, 26(31): 315013.
[8] [8] SUN D, DING Y Y, KONG L W, et al. First principles calculation of the electronic-optical properties of Cu2MgSn (SxSe1?x)4[J]. Optoelectronics letters, 2020, 16(1):29-33.
[9] [9] DRAINE B T, FLATAU P J. User guide for the discrete dipole approximation code DDSCAT 7.0[EB/OL].(2008-09-02) [2022-03-02]. https://arxiv.org/abs/0809.0337.
[10] [10] JOHNSON P B, CHRISTY R W. Optical constants of transition metals:Ti, V, Cr, Mn, Fe, Co, Ni, and Pd[J]. Physical review B, 1974, 9(12):5056.
[11] [11] MCPEAK K M, JAYANTI S V, KRESS S J, et al. Plasmonic films can easily be better:rules and recipes[J]. ACS photonics, 2015, 2(3):326-333.
[12] [12] MORTENSEN J J, HANSEN L B, JACOBSEN K W. Real-space grid implementation of the projector augmented wave method[J]. Physical review B, 2005, 71(3):035109.
[13] [13] ENKOVAARA J, ROSTGAARD C, MORTENSEN J J, et al. Electronic structure calculations with GPAW:a real-space implementation of the projector augmentedwave method[J]. Journal of physics:condensed matter, 2010, 22(25):253202.
[14] [14] WALTER M, HAKKINEN H, LEHTOVAARA L, et al. Time-dependent density-functional theory in the projector augmented-wave method[J]. The journal of chemical physics, 2008, 128(24):244101.
[15] [15] BAHN S R, JACOBSEN K W. An object-oriented scripting interface to a legacy electronic structure code[J]. Computing in science & engineering, 2000, 4(3):56-66.
[16] [16] HIBORN R C. Einstein coefficients, cross sections, f values, dipole moments, and all that[J]. ArXiv preprint physics, 2010:0202029.
[17] [17] VAN DIJIK M A, TCHEBOTAREVA A L, ORRIT M, et al. Absorption and scattering microscopy of single metal nanoparticles[J]. Physical chemistry chemical physics, 2006, 8(30):3486-3495.
[18] [18] MUSKENS O L, DEL F N, VALLEE F. Femtosecond response of a single metal nanoparticle[J]. Nano letters, 2006, 6(3):552-556.
[19] [19] ABASIFARD M, AHMADI V, FOTOUHI B, et al. DNA nucleobases sensing by localized plasmon resonances in graphene quantum dots with nanopore:a first principle approach[J]. The journal of physical chemistry C, 2019, 123(41) : 25309-25319.
[20] [20] FOTOUHI B, AHMADI V, ABASIFARD M, et al. Petahertz-frequency plasmons in graphene nanopore and their application to nanoparticle sensing[J]. Scientia iranica, 2017, 24(3):1669-1677.
[21] [21] FOTOUHI B, AHMADI V, ABASIFARD M. Controlling DNA translocation speed through graphene nanopore via plasmonic fields[J]. Scientia iranica, 2018, 25(3):1849-1856.
Get Citation
Copy Citation Text
Bashir Fotouhi. Photoabsorption analysis of metal nanoparticles by hybrid quantum/classical scheme[J]. Optoelectronics Letters, 2022, 18(9): 519
Received: Mar. 22, 2022
Accepted: Apr. 23, 2022
Published Online: Jan. 20, 2023
The Author Email: Fotouhi Bashir (B.Fotouhi@uok.ac.ir)