Journal of the Chinese Ceramic Society, Volume. 52, Issue 9, 2995(2024)
Effect of Thermal Exposure on Microstructure and Mechanical Properties of Plasma Sprayed Gd2Zr2O7
[1] [1] PEREPEZKO J H. The hotter the engine, the better[J]. Science, 2009,326(5956): 1068–1069.
[2] [2] PADTURE N P. Advanced structural ceramics in aerospace propulsion[J]. Nat Mater, 2016, 15(8): 804–809.
[3] [3] HARDWICKE C U, LAU Y C. Advances in thermal spray coatings for gas turbines and energy generation: A review[J]. J Therm Spray Technol, 2013, 22(5): 564–576.
[4] [4] CLARKE D R, PHILLPOT S R. Thermal barrier coating materials[J].Mater Today, 2005, 8(6): 22–29.
[5] [5] SONG J B, WANG L S, YAO J T, et al. Multi-scale structural design and advanced materials for thermal barrier coatings with high thermal insulation: A review[J]. Coatings, 2023, 13(2): 343.
[8] [8] SONG J B, WANG L S, DONG H, et al. Long lifespan thermal barrier coatings overview: Materials, manufacturing, failure mechanisms, and multiscale structural design[J]. Ceram Int, 2023, 49(1): 1–23.
[9] [9] LI G R, XIE H, YANG G J, et al. A comprehensive sintering mechanism for TBCs-Part I: An overall evolution with two-stage kinetics[J]. J Am Ceram Soc, 2017, 100(5): 2176–2189.
[10] [10] LI G R, XIE H, YANG G J, et al. A comprehensive sintering mechanism for TBCs-Part II: Multiscale multipoint interconnectionenhanced initial kinetics[J]. J Am Ceram Soc, 2017, 100(9): 4240–4251.
[11] [11] LI G R, YANG G J, LI C X, et al. A comprehensive sintering mechanism for thermal barrier coatings-Part III: Substrate constraint effect on healing of 2D pores[J]. J Am Ceram Soc, 2018, 101(8):3636–3648.
[12] [12] HUANG J B, WANG W Z, YU J Y, et al. Effect of particle size on the micro-cracking of plasma-sprayed YSZ coatings during thermal cycle testing[J]. J Therm Spray Technol, 2017, 26(4): 755–763.
[13] [13] ZHONG X H, ZHAO H Y, ZHOU X M, et al. Thermal shock behavior of toughened gadolinium zirconate/YSZ double-ceramic-layered thermal barrier coating[J]. J Alloys Compd, 2014, 593: 50–55.
[14] [14] GOLOSNOY I O, CIPITRIA A, CLYNE T W. Heat transfer through plasma-sprayed thermal barrier coatings in gas turbines: A review of recent work[J]. J Therm Spray Technol, 2009, 18(5): 809–821.
[15] [15] HUANG J B, WANG W Z, LI Y J, et al. Improve durability of plasma-splayed thermal barrier coatings by decreasing sinteringinduced stiffening in ceramic coatings[J]. J Eur Ceram Soc, 2020,40(4): 1433–1442.
[17] [17] ILAVSKY J, STALICK J K. Phase composition and its changes during annealing of plasma-sprayed YSZ[J]. Surf Coat Technol, 2000,127(2/3): 120–129.
[18] [18] BAKAN E, MACK D E, MAUER G, et al. Porosity–property relationships of plasma-sprayed Gd2Zr2O7/YSZ thermal barrier coatings[J]. J Am Ceram Soc, 2015, 98(8): 2647–2654.
[19] [19] LI C J, OHMORI A, MCPHERSON R. The relationship between microstructure and Young’s modulus of thermally sprayed ceramic coatings[J]. J Mater Sci, 1997, 32(4): 997–1004.
[20] [20] OCHROMBEL R, SCHNEIDER J, HILDMANN B, et al. Thermal expansion of EB-PVD yttria stabilized zirconia[J]. J Eur Ceram Soc,2010, 30(12): 2491–2496.
[22] [22] CHEN L, YANG G J. Epitaxial growth and cracking mechanisms of thermally sprayed ceramic splats[J]. J Therm Spray Technol, 2018,27(3): 255–268.
[23] [23] ZHANG X, KULCZYK-MALECKA J, CARR J, et al. 3D characterization of porosity in an air plasma-sprayed thermal barrier coating and its effect on thermal conductivity[J]. J Am Ceram Soc,2018, 101(6): 2482–2492.
[24] [24] CHEN L, YANG G J, LI C X, et al. Hierarchical formation of intra-splat cracks in thermal spray ceramic coatings[J]. J Therm Spray Tech, 2016, 25(5): 959–970.
[25] [25] CHEN L, YANG G J, LI C X. Formation of lamellar pores for splats via interfacial or sub-interfacial delamination at chemically bonded region[J]. J Therm Spray Technol, 2017, 26(3): 315–326.
[27] [27] WANG L S, TANG C H, DONG H, et al. Dominant effects of 2D pores on mechanical behaviors of plasma sprayed ceramic coatings during thermal exposure[J]. Ceram Int, 2020, 46(5): 6774–6781.
[28] [28] BAKAN E, MACK D E, MAUER G, et al. Porosity–property relationships of plasma-sprayed Gd2Zr2O7/YSZ thermal barrier coatings[J]. J Am Ceram Soc, 2015, 98(8): 2647–2654.
[29] [29] SUN X M, DU L Z, LAN H, et al. Study on thermal shock behavior of YSZ abradable sealing coating prepared by mixed solution precursor plasma spraying[J]. Surf Coat Technol, 2020, 397: 126045.
[30] [30] LI G R, YANG G J, LI C X, et al. Sintering characteristics of plasma-sprayed TBCs: Experimental analysis and an overall modelling[J]. Ceram Int, 2018, 44(3): 2982–2990.
[31] [31] CHENG B, YANG N, ZHANG Q, et al. Sintering induced the failure behavior of dense vertically crack and lamellar structured TBCs with equivalent thermal insulation performance[J]. Ceram Int, 2017, 43(17):15459–15465.
[33] [33] LIU T, CHEN X, YANG G J, et al. Properties evolution of plasma-sprayed La2Zr2O7 coating induced by pore structure evolution during thermal exposure[J]. Ceram Int, 2016, 42(14): 15485–15492.
[34] [34] ZHOU Y C, HASHIDA T. Coupled effects of temperature gradient and oxidation on thermal stress in thermal barrier coating system[J]. Int J Solids Struct, 2001, 38(24/25): 4235–4264.
[35] [35] WANG L S, SONG J B, DONG H, et al. Sintering-induced failure mechanism of thermal barrier coatings and sintering-resistant design[J].Coatings, 2022, 12(8): 1083.
[36] [36] WANG L S, WEI Z Y, CHENG B, et al. Gradient stiffening induced interfacial cracking and strain tolerant design in thermal barrier coatings[J]. Ceram Int, 2020, 46(2): 2355–2364.
Get Citation
Copy Citation Text
MA Zhongyu, WANG Lishuang, WANG Zhejin, DONG Hui, YAO Jiantao, ZHOU Yong. Effect of Thermal Exposure on Microstructure and Mechanical Properties of Plasma Sprayed Gd2Zr2O7[J]. Journal of the Chinese Ceramic Society, 2024, 52(9): 2995
Category:
Received: Dec. 4, 2023
Accepted: --
Published Online: Nov. 8, 2024
The Author Email: Lishuang WANG (lswang@xsyu.edu.cn)