Chinese Journal of Quantum Electronics, Volume. 39, Issue 1, 64(2022)

High-dimensional quantum key distribution based on orbital angular momentum photons: A review

Fangxiang WANG1...2,* and Wei CHEN12 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(123)

    [1] [1] Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography [J]. Reviews of Modern Physics, 2002, 74(1): 145-195.

    [2] [2] Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing [J]. Theoretical Computer Science, 2014, 560: 7-11.

    [3] [3] Scarani V, Bechmann-Pasquinucci H, Cerf N J, et al. The security of practical quantum key distribution [J]. Reviews of Modern Physics, 2009, 81(3): 1301-1350.

    [4] [4] Chen W, Han Z F, Zhang T, et al. Field experiment on a “star type" metropolitan quantum key distribution network [J]. IEEE Photonics Technology Letters, 2009, 21(9): 575-577.

    [5] [5] Wang S, Chen W, Yin Z Q, et al. Field and long-term demonstration of a wide area quantum key distribution network [J]. Optics Express, 2014, 22(18): 21739-21756.

    [6] [6] Sasaki M, Fujiwara M, Ishizuka H, et al. Field test of quantum key distribution in the Tokyo QKD Network [J]. Optics Express, 2011, 19(11): 10387-10409.

    [7] [7] Peev M, Pacher C, Alléaume R, et al. The SECOQC quantum key distribution network in Vienna [J]. New Journal of Physics, 2009, 11: 075001.

    [8] [8] Courtland R. China’s 2000 km quantum link is almost complete [J]. IEEE Spectrum, 2016, 53: 11-12.

    [9] [9] Bechmann-Pasquinucci H, Tittel W. Quantum cryptography using larger alphabets [J]. Physical Review A, 2000, 61(6): 062308.

    [10] [10] Cerf N J, Bourennane M, Karlsson A, et al. Security of quantum key distribution using d-level systems. [J]. Physical Review Letters, 2002, 88(12): 127902.

    [11] [11] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes [J]. Physical Review A, 1992, 45(11): 8185-8189.

    [12] [12] Barnett S M, Babiker M, Padgett M J. Optical orbital angular momentum [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 375(2087): 20150444.

    [13] [13] Padgett M J. Orbital angular momentum 25 years on [J]. Optics Express, 2017, 25(10): 11265-11274.

    [14] [14] Willner A E, Liu C. Perspective on using multiple orbital-angular-momentum beams for enhanced capacity in free-space optical communication links [J]. Nanophotonics, 2020, 10(1): 225-233.

    [15] [15] Erhard M, Fickler R, Krenn M, et al. Twisted photons: New quantum perspectives in high dimensions [J]. Light: Science & Applications, 2018, 7(3): 17146.

    [16] [16] Cozzolino D, da Lio B, Bacco D, et al. High-dimensional quantum communication: Benefits, progress, and future challenges [J]. Advanced Quantum Technologies, 2019, 2(12): 1900038.

    [17] [17] Sit A, Bouchard F, Fickler R, et al. High-dimensional intracity quantum cryptography with structured photons [J]. Optica, 2017, 4(9): 1006-1010.

    [18] [18] Wang F X, Chen W, Yin Z Q, et al. Characterizing high-quality high-dimensional quantum key distribution by state mapping between different degrees of freedom [J]. Physical Review Applied, 2019, 11(2): 024070.

    [19] [19] Wang Q K, Wang F X, Liu J, et al. High-dimensional quantum cryptography with hybrid orbital-angular-momentum states through 25 km of ring-core fiber: A proof-of-concept demonstration [J]. Physical Review Applied, 2021, 15(6): 064034.

    [20] [20] Ekert A K. Quantum cryptography based on Bell’s theorem [J]. Physical Review Letters, 1991, 67(6): 661-663.

    [21] [21] Bennett C H. Quantum cryptography using any two nonorthogonal states [J]. Physical Review Letters, 1992, 68(21): 3121-3124.

    [22] [22] Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography [J]. Physical Review Letters, 2005, 94(23): 230503.

    [23] [23] Lo H K, Ma X F, Chen K. Decoy state quantum key distribution [J]. Physical Review Letters, 2005, 94(23): 230504.

    [24] [24] Braunstein S L, Pirandola S. Side-channel-free quantum key distribution [J]. Physical Review Letters, 2012, 108(13): 130502.

    [25] [25] Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution [J]. Physical Review Letters, 2012, 108(13): 130503.

    [26] [26] Sasaki T, Yamamoto Y, Koashi M. Practical quantum key distribution protocol without monitoring signal disturbance [J]. Nature, 2014, 509(7501): 475-478.

    [27] [27] Lucamarini M, Yuan Z L, Dynes J F, et al. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters [J]. Nature, 2018, 557(7705): 400-403.

    [28] [28] Xu F H, Ma X F, Zhang Q, et al. Secure quantum key distribution with realistic devices [J]. Reviews of Modern Physics, 2020, 92(2): 025002.

    [29] [29] Liao S K, Cai W Q, Handsteiner J, et al. Satellite-relayed intercontinental quantum network [J]. Physical Review Letters, 2018, 120(3): 030501.

    [30] [30] Chen Y A, Zhang Q, Chen T Y, et al. An integrated space-to-ground quantum communication network over 4, 600 kilometres [J]. Nature, 2021, 589(7841): 214-219.

    [31] [31] Zhang Q, Xu F H, Chen Y A, et al. Large scale quantum key distribution: Challenges and solutions [invited] [J]. Optics Express, 2018, 26(18): 24260-24273.

    [32] [32] Sheridan L, Scarani V. Security proof for quantum key distribution using qudit systems [J]. Physical Review A, 2010, 82(3): 030301.

    [33] [33] Brádler K, Mirhosseini M, Fickler R, et al. Finite-key security analysis for multilevel quantum key distribution [J]. New Journal of Physics, 2016, 18(7): 073030.

    [34] [34] Wang X L, Cai X D, Su Z E, et al. Quantum teleportation of multiple degrees of freedom of a single photon [J]. Nature, 2015, 518(7540): 516-519.

    [35] [35] Wang X L, Luo Y H, Huang H L, et al. 18-qubit entanglement with six photons’ three degrees of freedom [J]. Physical Review Letters, 2018, 120(26): 260502.

    [36] [36] Islam N T, Lim C C W, Cahall C, et al. Provably secure and high-rate quantum key distribution with time-Bin qudits [J]. Science Advances, 2017, 3(11): e1701491.

    [37] [37] Liu X, Yao X, Wang H, et al. Energy-time entanglement-based dispersive optics quantum key distribution over optical fibers of 20 km [J]. Applied Physics Letters, 2019, 114(14): 141104.

    [38] [38] Ding Y H, Bacco D, Dalgaard K, et al. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits [J]. NPJ Quantum Information, 2017, 3(1): 25.

    [39] [39] Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol [J]. Physical Review Letters, 2000, 85(2): 441-444.

    [40] [40] Brassard G, Lütkenhaus N, Mor T, et al. Limitations on practical quantum cryptography [J]. Physical Review Letters, 2000, 85(6): 1330-1333.

    [41] [41] Lütkenhaus N. Security against individual attacks for realistic quantum key distribution [J]. Physical Review A, 2000, 61(5): 052304.

    [42] [42] Gottesman D, Lo H K, Norbert L, et al. Security of quantum key distribution with imperfect devices [C]. International Symposium on Information Theory, IEEE, 2004: 136.

    [43] [43] Hwang W Y. Quantum key distribution with high loss: Toward global secure communication [J]. Physical Review Letters, 2003, 91(5): 057901.

    [44] [44] Ma X F, Qi B, Zhao Y, et al. Practical decoy state for quantum key distribution [J]. Physical Review A, 2005, 72(1): 012326.

    [45] [45] Boaron A, Boso G, Rusca D, et al. Secure quantum key distribution over 421 km of optical fiber [J]. Physical Review Letters, 2018, 121(19): 190502.

    [46] [46] Bechmann-Pasquinucci H, Peres A. Quantum cryptography with 3-state systems [J]. Physical Review Letters, 2000, 85(15): 3313-3316.

    [47] [47] Renner R. Security of quantum key distribution [J]. International Journal of Quantum Information, 2008, 6(1): 1-127.

    [48] [48] Yuen H P. Security of quantum key distribution [J]. IEEE Access, 2016, 4(1): 724-749.

    [49] [49] Scarani V, Renner R. Quantum cryptography with finite resources: Unconditional security bound for discrete-variable protocols with one-way postprocessing [J]. Physical Review Letters, 2008, 100(20): 200501.

    [50] [50] Tomamichel M, Renner R. Uncertainty relation for smooth entropies [J]. Physical Review Letters, 2011, 106(11): 110506.

    [51] [51] Tomamichel M, Lim C C W, Gisin N, et al. Tight finite-key analysis for quantum cryptography [J]. Nature Communications, 2012, 3(1): 634.

    [52] [52] Lim C C W, Curty M, Walenta N, et al. Concise security bounds for practical decoy-state quantum key distribution [J]. Physical Review A, 2014, 89(2): 022307.

    [53] [53] Zhang Z, Zhao Q, Razavi M, et al. Improved key-rate bounds for practical decoy-state quantum-key-distribution systems [J]. Physical Review A, 2017, 95(1): 012333.

    [54] [54] Rusca D, Boaron A, Grünenfelder F, et al. Finite-key analysis for the 1-decoy state QKD protocol [J]. Applied Physics Letters, 2018, 112(17): 171104.

    [55] [55] Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons. [J]. Nature, 2001, 412(6844): 313-316.

    [56] [56] Padgett M J, Allen L. The Poynting vector in Laguerre-Gaussian laser modes [J]. Optics Communications, 1995, 121(1-3): 36-40.

    [57] [57] Leach J, Yao E, Padgett M J. Observation of the vortex structure of a non-integer vortex beam [J]. New Journal of Physics, 2004, 6: 71.

    [58] [58] Giovannini D, Romero J, Potocek V, et al. Spatially structured photons that travel in free space slower than the speed of light [J]. Science, 2015, 347(6224): 857-860.

    [59] [59] Zhou Z Y, Zhu Z H, Liu S L, et al. Quantum twisted double-slits experiments: Confirming wavefunctions’ physical reality [J]. Science Bulletin, 2017, 62(17): 1185-1192.

    [60] [60] Lyons A, Roger T, Westerberg N, et al. How fast is a twisted photon? [J]. Optica, 2018, 5(6): 682-686.

    [61] [61] Yao A M, Padgett M J. Orbital angular momentum: Origins, behavior and applications [J]. Advances in Optics and Photonics, 2011, 3(2): 161-204.

    [62] [62] Shen Y J, Wang X J, Xie Z W, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities [J]. Light: Science & Applications, 2019, 8(1): 90.

    [63] [63] Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams [J]. Advances in Optics and Photonics, 2015, 7(1): 66-106.

    [64] [64] Padgett M, Bowman R. Tweezers with a twist [J]. Nature Photonics, 2011, 5(6): 343-348.

    [65] [65] Grier D G. A revolution in optical manipulation [J]. Nature, 2003, 424(6950): 810-816.

    [66] [66] Li F S, Xu T Z, Zhang W H, et al. Optical images rotation and reflection with engineered orbital angular momentum spectrum [J]. Applied Physics Letters, 2018, 113(16): 161109.

    [67] [67] Ding D S, Zhang W, Zhou Z Y, et al. Quantum storage of orbital angular momentum entanglement in an atomic ensemble [J]. Physical Review Letters, 2015, 114(5): 050502.

    [68] [68] Tang J S, Zhou Z Q, Wang Y T, et al. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory [J]. Nature Communications, 2015, 6(1): 8652.

    [69] [69] Lavery M P J, Speirits F C, Barnett S M, et al. Detection of a spinning object using light’s orbital angular momentum [J]. Science, 2013, 341(6145): 537-540.

    [70] [70] D’Ambrosio V, Spagnolo N, Del Re L, et al. Photonic polarization gears for ultra-sensitive angular measurements [J]. Nature Communications, 2013, 4(1): 2432.

    [71] [71] Chen L X, Lei J J, Romero J. Quantum digital spiral imaging [J]. Light: Science & Applications, 2014, 3(3): e153.

    [72] [72] Lee C, Bunandar D, Zhang Z, et al. Large-alphabet encoding for higher-rate quantum key distribution [J]. Optics Express, 2019, 27(13): 17539-17549.

    [73] [73] Ramachandran S, Kristensen P, Yan M F. Generation and propagation of radially polarized beams in optical fibers [J]. Optics Letters, 2009, 34(16): 2525-2527.

    [74] [74] Oh K, Choi S, Jung Y, et al. Novel hollow optical fibers and their applications in photonic devices for optical communications [J]. Journal of Lightwave Technology, 2005, 23(2): 524-532.

    [75] [75] Sampsell J B. Spatial light modulator [P]. US Patent, 1990, Patent number US4954789.

    [76] [76] Bozler C O, Rabe S. Spatial light modulator [P]. US Patent, 1998, Patent number US5784189.

    [77] [77] Leddy M, Boysel M, Delong J A, et al. Digital micro-mirror based image simulation system [P]. US Patent, 1995, Patent number US5457493.

    [78] [78] Dudley D, Duncan W M, Slaughter J. Emerging digital micromirror device (DMD) applications [J]. MOEMS Display and Imaging Systems, 2003, 4985: 14.

    [79] [79] Fickler R, Lapkiewicz R, Plick W N, et al. Quantum entanglement of high angular momenta [J]. Science, 2012, 338(6107): 640-643.

    [80] [80] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media [J]. Physical Review Letters, 2006, 96(16): 163905.

    [81] [81] Rubano A, Cardano F, Piccirillo B, et al. Q-plate technology: A progress review [invited] [J]. Journal of the Optical Society of America B, 2019, 36(5): D70.

    [82] [82] Naidoo D, Roux F S, Dudley A, et al. Controlled generation of higher-order Poincaré sphere beams from a laser [J]. Nature Photonics, 2016, 10(5): 327-332.

    [83] [83] Ji W, Lee C H, Chen P, et al. Meta-q-plate for complex beam shaping [J]. Scientific Reports, 2016, 6(1): 25528.

    [84] [84] Forbes A, de Oliveira M, Dennis M R. Structured light [J]. Nature Photonics, 2021, 15(4): 253-262.

    [85] [85] Beijersbergen M W, Coerwinkel R P C, Kristensen M, et al. Helical-wavefront laser beams produced with a spiral phaseplate [J]. Optics Communications, 1994, 112(5-6): 321-327.

    [86] [86] Berkhout G C G, Lavery M P J, Courtial J, et al. Efficient sorting of orbital angular momentum states of light [J]. Physical Review Letters, 2010, 105(15): 153601.

    [87] [87] Lavery M P J, Robertson D J, Berkhout G C G, et al. Refractive elements for the measurement of the orbital angular momentum of a single photon [J]. Optics Express, 2012, 20(3): 2110-2115.

    [88] [88] O’Sullivan M N, Mirhosseini M, Malik M, et al. Near-perfect sorting of orbital angular momentum and angular position states of light [J]. Optics Express, 2012, 20(22): 24444-24449.

    [89] [89] Mirhosseini M, Malik M, Shi Z M, et al. Efficient separation of the orbital angular momentum eigenstates of light [J]. Nature Communications, 2013, 4(1): 2781.

    [90] [90] Wen Y H, Chremmos I, Chen Y J, et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes [J]. Physical Review Letters, 2018, 120(19): 193904.

    [91] [91] Leach J, Padgett M J, Barnett S M, et al. Measuring the orbital angular momentum of a single photon [J]. Physical Review Letters, 2002, 88(25): 257901.

    [92] [92] Leach J, Courtial J, Skeldon K, et al. Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon [J]. Physical Review Letters, 2004, 92(1): 013601.

    [93] [93] Zhang W H, Qi Q Q, Zhou J, et al. Mimicking faraday rotation to sort the orbital angular momentum of light [J]. Physical Review Letters, 2014, 112(15): 153601.

    [94] [94] Zhou Y, Mirhosseini M, Fu D, et al. Sorting photons by radial quantum number [J]. Physical Review Letters, 2017, 119(26): 263602.

    [95] [95] Gu X, Krenn M, Erhard M, et al. Gouy phase radial mode sorter for light: Concepts and experiments [J]. Physical Review Letters, 2018, 120(10): 103601.

    [96] [96] Slussarenko S, D’Ambrosio V, Piccirillo B, et al. The polarizing Sagnac interferometer: A tool for light orbital angular momentum sorting and spin-orbit photon processing [J]. Optics Express, 2010, 18(26): 27205-27216.

    [97] [97] Wang F X, Chen W, Li Y P, et al. Single-path Sagnac interferometer with Dove prism for orbital-angular-momentum photon manipulation [J]. Optics Express, 2017, 25(21): 24946-24959.

    [98] [98] Wang F X, Wu J, Chen W, et al. Controlled-phase manipulation module for orbital-angular-momentum photon states [J]. Optics Letters, 2018, 43(2): 349-352.

    [99] [99] Wang F X, Chen W, Yin Z Q, et al. Scalable orbital-angular-momentum sorting without destroying photon states [J]. Physical Review A, 2016, 94(3): 033847.

    [100] [100] Ionicioiu R. Sorting quantum systems efficiently [J]. Scientific Reports, 2016, 6: 25356.

    [101] [101] Krenn M, Handsteiner J, Fink M, et al. Twisted photon entanglement through turbulent air across Vienna [J]. Proceedings of the National Academy of Sciences, 2015, 112(46): 14197-14201.

    [102] [102] Krenn M, Handsteiner J, Fink M, et al. Twisted light transmission over 143 km [J]. Proceedings of the National Academy of Sciences, 2016, 113(48): 13648-13653.

    [103] [103] Bozinovic N, Golowich S, Kristensen P, et al. Control of orbital angular momentum of light with optical fibers [J]. Optics Letters, 2012, 37(13): 2451-2453.

    [104] [104] Bozinovic N, Yue Y, Ren Y X, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers [J]. Science, 2013, 340(6140): 1545-1548.

    [105] [105] Gregg P, Kristensen P, Ramachandran S. Conservation of orbital angular momentum in air-core optical fibers [J]. Optica, 2015, 2(3): 267-270.

    [106] [106] Cozzolino D, Bacco D, da Lio B, et al. Orbital angular momentum states enabling fiber-based high-dimensional quantum communication [J]. Physical Review Applied, 2019, 11(6): 064058.

    [107] [107] Groblacher S, Jennewein T, Vaziri A, et al. Experimental quantum cryptography with qutrits [J]. New Journal of Physics, 2006, 8(5): 75.

    [108] [108] Mirhosseini M, Magaa-Loaiza O S, O’Sullivan M N, et al. High-dimensional quantum cryptography with twisted light [J]. New Journal of Physics, 2015, 17(3): 033033.

    [109] [109] Hadfield R H. Single-photon detectors for optical quantum information applications [J]. Nature Photonics, 2009, 3(12): 696-705.

    [110] [110] Eisaman M D, Fan J, Migdall A, et al. Invited review article: Single-photon sources and detectors [J]. The Review of Scientific Instruments, 2011, 82(7): 071101.

    [111] [111] Wang F, Zeng P, Zhao J, et al. High-dimensional quantum key distribution based on mutually partially unbiased bases [J]. Physical Review A, 2020, 101(3): 032340.

    [112] [112] Marrucci L, Karimi E, Slussarenko S, et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications [J]. Journal of Optics, 2011, 13(6): 064001.

    [113] [113] Ndagano B, Nape I, Perez-Garcia B, et al. A deterministic detector for vector vortex states [J]. Scientific Reports, 2017, 7(1): 13882.

    [114] [114] Nape I, Otte E, Vallés A, et al. Self-healing high-dimensional quantum key distribution using hybrid spin-orbit Bessel states [J]. Optics Express, 2018, 26(21): 26946-26960.

    [115] [115] Mafu M, Dudley A, Goyal S, et al. Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases [J]. Physical Review A, 2013, 88(3): 032305.

    [116] [116] Bouchard F, Sit A, Heshami K, et al. Round-robin differential-phase-shift quantum key distribution with twisted photons [J]. Physical Review A, 2018, 98(1): 010301.

    [117] [117] Bouchard F, Sit A, Hufnagel F, et al. Quantum cryptography with twisted photons through an outdoor underwater channel [J]. Optics Express, 2018, 26(17): 22563-22573.

    [118] [118] Bouchard F, Heshami K, England D, et al. Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons [J]. Quantum, 2018, 2: 111.

    [119] [119] Bouchard F, Hufnagel F, Koutny D, et al. Quantum process tomography of a high-dimensional quantum communication channel [J]. Quantum Physics, 2018, arXiv: 1806. 08018v2.

    [120] [120] Zhou Y, Mirhosseini M, Oliver S, et al. Using all transverse degrees of freedom in quantum communications based on a generic mode sorter [J]. Optics Express, 2019, 27(7): 10383-10394.

    [121] [121] Zhou Y, Zhao J, Braverman B, et al. Multiprobe time reversal for high-fidelity vortex-mode-division multiplexing over a turbulent free-space link [J]. Physical Review Applied, 2021, 15(3): 034011.

    [122] [122] Larocque H, Gagnon-Bischoff J, Mortimer D, et al. Generalized optical angular momentum sorter and its application to high-dimensional quantum cryptography [J]. Optics Express, 2017, 25(17): 19832-19843.

    [123] [123] Ndagano B, Nape I, Cox M A, et al. Creation and detection of vector vortex modes for classical and quantum communication [J]. Journal of Lightwave Technology, 2018, 36(2): 292-301.

    Tools

    Get Citation

    Copy Citation Text

    WANG Fangxiang, CHEN Wei. High-dimensional quantum key distribution based on orbital angular momentum photons: A review[J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 64

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Oct. 19, 2021

    Accepted: --

    Published Online: Mar. 1, 2022

    The Author Email: Fangxiang WANG (fxwung@ustc.edu.cn)

    DOI:10.3969/j.issn.1007-5461. 2022.01.004

    Topics