Chinese Journal of Ship Research, Volume. 19, Issue 6, 74(2024)

Hull form optimization based on multi-fidelity deep neural network

Yabo WEI1...2, Yangjun WANG3, and Decheng WAN12 |Show fewer author(s)
Author Affiliations
  • 1Computational Marine Hydrodynamics Laboratory, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 3College of Advanced Interdisciplinary Studies, National University of Defense Technology, Nanjing 210000, China
  • show less
    Figures & Tables(20)
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    • Table 1. Parameter setting of multi-fidelity deep neural network (MFDNN)

      View table
      View in Article

      Table 1. Parameter setting of multi-fidelity deep neural network (MFDNN)

      输入层神经元数量宽度深度输出层神经元数量
      $ N{N_{\rm{L}}} $13251
      $ N{N_{{\rm{H}}1}} $23241
      $ N{N_{{\rm{H}}2}} $23241
    • Table 2. Main particulars of DTMB 5415

      View table
      View in Article

      Table 2. Main particulars of DTMB 5415

      参数数值
      垂线间长$ L_{{\mathrm{pp}}}/\mathrm{m} $5.72
      最大船宽B/m0.77
      吃水T/m0.25
      型深D/m0.77
      排水体积$ \nabla /{{{\mathrm{m}}^3}} $0.55
      湿表面积$ S /{{{\mathrm{m}}^2}} $4.86
    • Table 3. Comparison between potential flow calculation result and experimental result

      View table
      View in Article

      Table 3. Comparison between potential flow calculation result and experimental result

      $Fr$${C_{\rm{w}}}$${C_{\rm{t}}}$${C_{\text{t-EFD}}}$计算值和试验值总阻力系数误差/%
      0.281.20×10−34.16×10−34.23×10−31.65
    • Table 4. Comparison between viscous flow calculation result and experimental result

      View table
      View in Article

      Table 4. Comparison between viscous flow calculation result and experimental result

      $Fr$${C_{\rm{w}}}$${C_{\rm{t}}}$计算值和试验值总阻力系数误差/%
      0.284.21×10−34.23×10−30.47
    • Table 5. The range of values for the design variables

      View table
      View in Article

      Table 5. The range of values for the design variables

      方法设计变量取值范围备注
      平移法${\alpha _{1{\mathrm{f}}}}$[−0.016, 0.016]前半体变化幅值
      ${\alpha _{1{\mathrm{a}}}}$[−0.016, 0.016]后半体变化幅值
      FFD${{\boldsymbol{x}}_1}$[−0.01, 0.01]沿船长方向移动
      ${{\boldsymbol{y}}_1}$[−0.006, 0.006]沿船宽方向移动
      ${{\textit{z}}_1}$[−0.012, 0.012]沿吃水方向移动
    • Table 6. Error analysis of Kriging model

      View table
      View in Article

      Table 6. Error analysis of Kriging model

      零次确定性多项式一次确定性多项式二次确定性多项式误差指标
      高斯相关函数0.233 20.218 80.167 1AAE
      0.980 20.592 80.403 3MAE
      0.099 40.070 40.037 8MSE
      样条相关函数0.259 10.192 60.162 9AAE
      0.743 80.524 60.399 8MAE
      0.087 80.053 80.036 4MSE
    • Table 7. Error analysis of MFDNN model

      View table
      View in Article

      Table 7. Error analysis of MFDNN model

      样本点数目
      101520253035404550
      MSE0.009 20.006 70.011 50.013 00.015 70.019 60.021 00.023 20.018 7
    • Table 8. Parameter settings for genetic algorithm

      View table
      View in Article

      Table 8. Parameter settings for genetic algorithm

      单目标遗传算法参数数值
      种群数量200
      迭代次数500
      变异率0.2
      交叉率0.8
    • Table 9. Comparison of values taken for design variables with optimization results

      View table
      View in Article

      Table 9. Comparison of values taken for design variables with optimization results

      设计变量取值总阻力${R_{\rm{t}}}$
      ${\alpha _{1{\mathrm{f}}}}$${\alpha _{1{\mathrm{a}}}}$${{\boldsymbol{x}}_1}$${{\boldsymbol{y}}_1}$${{\textit{z}}_1}$预报结果/NCFD/N预报误差/%优化百分比/%
      Initial0000044.66
      Opt-K0.0160.016−0.01−0.0060.01241.3142.162.025.59
      Opt-MF0.0160.016−0.010.0060.01240.5741.652.596.73
    Tools

    Get Citation

    Copy Citation Text

    Yabo WEI, Yangjun WANG, Decheng WAN. Hull form optimization based on multi-fidelity deep neural network[J]. Chinese Journal of Ship Research, 2024, 19(6): 74

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Theory and Method of Intelligent Design for Ship and Ocean Engineering

    Received: Jul. 12, 2024

    Accepted: --

    Published Online: Mar. 14, 2025

    The Author Email:

    DOI:10.19693/j.issn.1673-3185.04062

    Topics