Acta Optica Sinica, Volume. 44, Issue 3, 0316001(2024)

Difference in Extinction Characteristics of Bioparticle Aggregates with Different Monomer Shapes

Guolong Chen1,3, Youlin Gu1,2,3、*, Yihua Hu1,2,3, Fanhao Meng1,3, and Xi Zhang1,3
Author Affiliations
  • 1State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei 230037, Anhui, China
  • 2Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, Anhui, China
  • 3National University of Defense Technology, Hefei 230037, Anhui, China
  • show less
    References(31)

    [1] Hu Y H, Zhao X Y, Gu Y L et al. Significant broadband extinction abilities of bioaerosols[J]. Science China Materials, 62, 1033-1045(2019).

    [2] Cao H, Gu Y L, Fang J J et al. Application of stacking ensemble learning model in quantitative analysis of biomaterial activity[J]. Microchemical Journal, 183, 108075(2022).

    [3] Fröhlich-Nowoisky J, Kampf C J, Weber B et al. Bioaerosols in the earth system: climate, health, and ecosystem interactions[J]. Atmospheric Research, 182, 346-376(2016).

    [4] Gu Y L, Chen G L, Hu Y H et al. Research progress on the deposition and diffusion of aerosols (invited)[J]. Infrared and Laser Engineering, 51, 20220313(2022).

    [5] Zhao X Y, Hu Y H, Gu Y L et al. Transmittance of laser in the microorganism aggregated particle swarm[J]. Acta Optica Sinica, 35, 0616001(2015).

    [6] Li L, Hu Y H, Gu Y L et al. Infrared extinction performance of randomly oriented microbial-clustered agglomerate materials[J]. Applied Spectroscopy, 71, 2555-2562(2017).

    [7] Gu Y L, Lu W, Fang J J et al. Research progress on artificially prepared infrared extinction materials and their extinction properties (Invited)[J]. Infrared and Laser Engineering, 49, 20201018(2020).

    [8] Lu W, Gu Y L, Fang J J et al. 10.6 μm laser extinction performance of polydisperse biological aggregate particles[J]. Chinese Journal of Lasers, 48, 0401019(2021).

    [9] Chen G L, Gu Y L, Hu Y H et al. Research progress of biological extinction materials[J]. Proceedings of SPIE, 12617, 126172R(2023).

    [10] Gu Y L, Hu Y H, Zhao X Y et al. Combined analysis of static and dynamic extinction characteristics of microbial spores and mycelia as a mid-infrared extinction material[J]. Optik, 176, 535-541(2019).

    [11] Ding W Y, Gu Y L, Hu Y H et al. Quantitative determination of microbial materials activity based on infrared extinction properties[J]. Optics Express, 31, 31486-31503(2023).

    [12] Chen G L, Gu Y L, Hu Y H et al. Analysis of extinction characteristics of non-spherical biological particle aggregates[J]. Chinese Optics Letters, 21, 090003(2023).

    [13] Ding W Y, Gu Y L, Hu Y H et al. Ballistic cluster-cluster aggregation model optimization[J]. AIP Advances, 13, 035017(2023).

    [14] Gu Y L, Zhang X, Hu Y H et al. Research progress of aerosol particle aggregation model(invited)[J]. Infrared and Laser Engineering, 52, 20230243(2023).

    [15] Qin Z H, Zhang Q X, Luo J et al. Optical properties of soot aggregates with different monomer shapes[J]. Environmental Research, 214, 113895(2022).

    [16] Wu Y, Cheng T H, Zheng L J et al. Effect of morphology on the optical properties of soot aggregated with spheroidal monomers[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 168, 158-169(2016).

    [17] Perry J, Kimery J, Matthews L S et al. Effects of monomer shape on the formation of aggregates from a power law monomer distribution[J]. New Journal of Physics, 15, 073026(2013).

    [18] El-Emam M A, Zhou L, Shi W D et al. Theories and applications of CFD-DEM coupling approach for granular flow: a review[J]. Archives of Computational Methods in Engineering, 28, 4979-5020(2021).

    [19] Liu H X, Wang P, Hu Y H et al. Optimised fermentation conditions and improved collection efficiency using dual cyclone equipment to enhance fungal conidia production[J]. Biocontrol Science and Technology, 25, 1011-1023(2015).

    [20] Booij H C, Thoone G P J M. Generalization of Kramers-Kronig transforms and some approximations of relations between viscoelastic quantities[J]. Rheologica Acta, 21, 15-24(1982).

    [21] Grosse P, Offermann V. Analysis of reflectance data using the Kramers-Kronig relations[J]. Applied Physics A, 52, 138-144(1991).

    [22] Meitav O, Shaul O, Abookasis D. Determination of the complex refractive index segments of turbid sample with multispectral spatially modulated structured light and models approximation[J]. Journal of Biomedical Optics, 22, 097004(2017).

    [23] Segal-Rosenheimer M, Linker R. Impact of the non-measured infrared spectral range of the imaginary refractive index on the derivation of the real refractive index using the Kramers-Kronig transform[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 1147-1161(2009).

    [24] Lattuada M, Wu H, Morbidelli M. Radial density distribution of fractal clusters[J]. Chemical Engineering Science, 59, 4401-4413(2004).

    [25] Kozasa T, Blum J, Mukai T. Optical properties of dust aggregates. I. Wavelength dependence[J]. Astronomy and Astrophysics, 263, 423-432(1992).

    [26] Kozasa T, Blum J, Okamoto H et al. Optical properties of dust aggregates. II. Angular dependence of scattered light[J]. Astronomy and Astrophysics, 276, 278-288(1993).

    [27] Huang C J, Wu Z S, Liu Y F et al. Effect of porosity on optical properties of aerosol aggregate particles[J]. Acta Optica Sinica, 33, 0129001(2013).

    [28] Fan Z Y, Wang Y Y, Li W J et al. Difference in optical properties of black carbon aerosols simulated by different numerical models[J]. Acta Optica Sinica, 43, 0601004(2023).

    [29] Draine B T, Flatau P J. Discrete-dipole approximation for periodic targets: theory and tests[J]. Journal of the Optical Society of America A, 25, 2693-2703(2008).

    [30] Collinge M J, Draine B T. Discrete-dipole approximation with polarizabilities that account for both finite wavelength and target geometry[J]. Journal of the Optical Society of America A, 21, 2023-2028(2004).

    [31] Draine B T, Flatau P J. Discrete-dipole approximation for scattering calculations[J]. Journal of the Optical Society of America A, 11, 1491-1499(1994).

    Tools

    Get Citation

    Copy Citation Text

    Guolong Chen, Youlin Gu, Yihua Hu, Fanhao Meng, Xi Zhang. Difference in Extinction Characteristics of Bioparticle Aggregates with Different Monomer Shapes[J]. Acta Optica Sinica, 2024, 44(3): 0316001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Oct. 13, 2023

    Accepted: Nov. 20, 2023

    Published Online: Feb. 29, 2024

    The Author Email: Gu Youlin (ylgu0912@163.com)

    DOI:10.3788/AOS231644

    Topics