Journal of the Chinese Ceramic Society, Volume. 50, Issue 7, 1936(2022)
Photocatalytic Performance of Copper Zinc Tin Sulfide via Hydrothermal Synthesis
[1] [1] SHIN B, GUNAWAN O, YU Z, et al. Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber[J]. Prog Photovoltaics, 2013, 21(1): 72-76.
[2] [2] KATAGIRI H, JIMBO K, MAW W S, et al. Development of CZTS-based thin film solar cells[J]. Thin Solid Films, 2009, 517(7): 2455-2460.
[3] [3] ALDAKOV D, LEFRANCOIS A, REISS P, et al. Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications[J]. J Mater Chem C, 2013, 1(24): 3756-3776.
[4] [4] DAI P, GUAN Z, CHEN Y, et al. Porous copper zinc tin sulfide thin film as photocathode for double junction photoelectrochemical solar cells[J]. Chem Commun, 2012, 48(24): 3006-3008.
[5] [5] WANG J, ZHANG P, SONG X, et al. Surfactant-free hydrothermal synthesis of Cu2ZnSnS4 (CZTS) nanocrystals with photocatalytic properties[J]. RSC Adv, 2014, 4(53): 27805-27810.
[6] [6] LIU C Y, LI Z M, GU H Y, et al. Sodium Passivation of the Grain Boundaries in CuInSe2 and Cu2ZnSnS4 for High-Efficiency Solar Cells[J]. Adv Energy Mater, 2017, 7(8): 16401457.
[7] [7] LIN Z Y, LI L H, YU L L, et al. Modifying photocatalysts for solar hydrogen evolution based on the electron behavior[J]. J Mater Chem A, 2017, 5(11): 5235-5259.
[8] [8] SHEFIAL J, AKANKSHA S, GOVIND G, et al. Precursor ratio optimizations for the synthesis of colloidal CZTS nanoparticles for photocatalytic degradation of malachite green[J]. J Phys Chem Solids, 2018, 122: 8-18.
[9] [9] CHEN X Y, WANG J L, ZHOU W H, et al. Rational synthesis of (Cu1xAgx)2ZnSnS4 nanocrystals with low defect and tuning band gap[J]. Mater Lett, 2016, 181: 317-320.
[11] [11] GUO Y, WEI J, LIU Y, et al. Surfactant-tuned phase structure and morphologies of Cu2ZnSnS4 hierarchical microstructures and their visible-light photocatalytic activities[J]. Nanoscale Res Lett, 2017, 12(1): 181.
[12] [12] TIONG V T, YI Z, BELL J, et al. Phase-selective hydrothermal synthesis of Cu2ZnSnS4 nanocrystals: The effect of the sulphur precursor[J]. Cryst Eng Comm, 2014, 16(20): 4306-4313.
[13] [13] ZHOU Y L, ZHOU W H, MMI L, et al. Hierarchical Cu2ZnSnS4 particles for a low-cost solar cell: Morphology control and growth mechanism[J]. J Mater Chem C, 2011, 115(40): 19632-19639.
[14] [14] GUO Q, HILLHOUSE H W, AGRAWAL R. Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells[J]. J Phys Chem C, 2009, 131(33): 11672-11673.
[15] [15] WALSH A, CHEN S, WEI S, et al. Kesterite thin-film solar cells: Advances in materials modelling of Cu2ZnSnS4[J]. Adv Energy Mater, 2012, 2(4): 400-409.
[17] [17] VIDYASAGAR C C, ARTHOBA N Y. Surfactant (PEG 400) effects on crystallinity of ZnO nanoparticles[J]. Arabian J Chem, 2016, 9(4): 507-510.
[18] [18] ZHU X, LIU Y, LI Z, et al. Thermochromic microcapsules with highly transparent shells obtained through in-situ polymerization of urea formaldehyde around thermochromic cores for smart wood coatings[J]. Sci Rep, 2018, 8(1): 4015.
[19] [19] HE J, WANG W, FEI L, et al. Hydrothermal synthesis of hierarchical rose-like Bi2WO6 microspheres with high photocatalytic activities under visible-light irradiation[J]. Mater Sci Eng B, 2012, 177(12): 967-974.
[20] [20] JIN Y, TAN C, LI W, et al. Preparation of anatase TiO2 with assistance of surfactant OP-10 and its electrochemical properties as an anode material for lithium ion batteries[J]. Rare Met, 2011, 29(5): 505-510.
[24] [24] LI Z, LUI A L K, LAM K H, et al. Phase-selective synthesis of Cu2ZnSnS4 nanocrystals using different sulfur precursors[J]. Inorg Chem, 2014, 53(20): 10874-10880.
[25] [25] BANRAMZADEH S, ABDIZADH H, GOLOBOSTAN F R M R. Controlling the morphology and properties of solvothermal synthesized Cu2ZnSnS4 nanoparticles by solvent type[J]. J Alloys Compd, 2015, 642: 124-130.
[28] [28] HU X, ZHU Q, GU Z, et al. Wastewater treatment by sonophotocatalysis using PEG modified TiO2 film in a circular photocatalytic-ultrasonic system[J]. Ultrason Sonochem, 2017, 36: 301-308.
[29] [29] ZHOU Y L, ZHOU W H, MEI L, et al. Hierarchical Cu2ZnSnS4 particles for a low-cost solar cell: Morphology control and growth mechanism[J]. J Phys Chem C, 2011, 115(40): 19632-19639.
[30] [30] YAN S C, LI Z S, ZOU Z G. Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation[J]. Langmuir, 2010, 26(6): 3894-3901.
[32] [32] RENGIFO-HERRERA J A, BLANCO M N, FIDALGO de CORTALEZZI M M, et al. Visible-light-absorbing evonik P-25 nanoparticles modified with tungstophosphoric acid and their photocatalytic activity on different wavelengths[J]. Mater Res Bull, 2016, 83: 360-368.
[34] [34] KUSH P, DEORI K, KUMAR A, et al. Efficient hydrogen/oxygen evolution and photocatalytic dye degradation and reduction of aqueous Cr by surfactant free hydrophilic Cu ZnSnS nanoparticles[J]. J Mater Chem, 2015, 3(15): 8098-8106.
[35] [35] GUAN H, SHEN H, RAZA A. Solvothermal synthesis of p-type Cu2ZnSnS4-based nanocrystals and photocatalytic properties for degradation of methylene blue[J]. Catal Lett, 2017, 147(7): 1844-1850.
[36] [36] YU X, SHAVEL A, AN X, et al. Cu2ZnSnS4-Pt and Cu2ZnSnS4-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation[J]. J Am Chem Soc, 2014. 136(26): 9236-9239.
[37] [37] GUO Y, WEI J, LIU Y, et al. Surfactant-tuned phase structure and morphologies of Cu2ZnSnS4 hierarchical microstructures and their visible-light photocatalytic activities[J]. Nanoscale Res Lett, 2017, 12(1): 181.
Get Citation
Copy Citation Text
HU Xuemei, QIAO Junqiang. Photocatalytic Performance of Copper Zinc Tin Sulfide via Hydrothermal Synthesis[J]. Journal of the Chinese Ceramic Society, 2022, 50(7): 1936
Category:
Received: Oct. 8, 2021
Accepted: --
Published Online: Dec. 6, 2022
The Author Email: Xuemei HU (xmhu@gsas.ac.cn)
CSTR:32186.14.