Journal of the Chinese Ceramic Society, Volume. 52, Issue 3, 828(2024)
Preparation and Performance of EuxLu1.4-xGd0.6O3 Transparent Ceramics
[1] [1] ZHOU D, SHI Y, XIE J J, et al. Fabrication and luminescent properties of Nd3+-doped Lu2O3 Transparent ceramics by pressureless sintering[J]. J Am Ceram Soc, 2009, 92(10): 2182-2187.
[2] [2] RAUKAS M, BASUN S, DENNIS W M, et al. Optical properties of Ce3+ doped Lu2O3 and Y2O3 single crystals[J]. J Soc Inf Disp, 1996, 4(3): 189-192.
[3] [3] LIU J Q, ZHAO X D, XU Y S, et al. All-inorganic glass scintillators: scintillation mechanism, materials, and applications[J]. Laser Photonics Rev, 2023, 17(7): 1-23.
[4] [4] NIKL M, YOSHIKAWA A. Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection[J]. Adv Opt Mater, 2015, 3(4): 463-481.
[5] [5] MAO R H, ZHANG L Y, ZHU R Y. Optical and scintillation properties of inorganic scintillators in high energy physics[J]. IEEE Trans Nucl Sci, 2008, 55(4): 2425-2431.
[6] [6] NEITZEL U. Status and prospects of digital detector technology for CR and DR[J]. Radiat Prot Dosimetry, 2005, 114(1/3): 32-38.
[7] [7] LUPEI V, LUPEI A, PAVEL N A, et al. Comparison of Nd: YAG single crystals and transparent ceramics as laser materials[C] //Seventh Conference on Optics, Constanta,Romania, 2004, 5581: 212-219.
[8] [8] KAMINSKII A A, SH AKCHURIN M, BECKER P, et al. Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants[J]. Laser Phys Lett, 2008, 5(4): 300-303.
[9] [9] NIKL M, LAGUTA V V, VEDDA A. Energy transfer and charge carrier capture processes in wide-band-gap scintillators[J]. Phys Stat Sol (a), 2007, 204(3): 683-689.
[10] [10] LOUIS C, LEBBOU K, FLORES-GONZALEZ M A, et al. Correlation of the structure and the luminescence properties of Eu3+-doped Gd2O3 oxide between fiber single crystal and the nano-size powders[J]. J Cryst Growth, 2004, 265(3/4): 459-465.
[11] [11] ZORENKO Y, GORBENKO V, KONSTANKEVYCH I, et al. Scintillation properties of Lu3Al5O12: Ce single-crystalline films[J]. Nucl Instrum Meth Phys Res Sect A Accel Spectrometers Detect Assoc Equip, 2002, 486(1/2): 309-314.
[12] [12] RAUKAS M, BASUN S, DENNIS W M, et al. Optical properties of Ce3+-doped?Lu2O3 and Y2O3 single crystals[J]. J Soc Inf Display, 1996, 4(3): 189.
[13] [13] RéTOT H, BESSIèRE A, VIANA B, et al. 5d-4f and 4f-4f emissions in Ln-doped sesquioxide ceramics[J]. Opt Mater, 2011, 33(7): 1008-1011.
[14] [14] LEMPICKI A, BRECHER C, SZUPRYCZYNSKI P, et al. A new lutetia-based ceramic scintillator for X-ray imaging[J]. Nucl Instrum Methods Phys Res A, 2002, 488(3): 579-590.
[15] [15] RéTOT H, BLAHUTA S, BESSIèRE A, et al. Improved scintillation time response in (Lu0.5Gd0.5)2O3?: ?Eu3+ compared with Lu2O3?: ?Eu3+ transparent ceramics[J]. J Phys D: Appl Phys, 2011, 44(23): 235101.
[16] [16] SEELEY Z M, DAI Z R, KUNTZ J D, et al. Phase stabilization in transparent Lu2O3: Eu ceramics by lattice expansion[J]. Opt Mater, 2012, 35(1): 74-78.
[17] [17] SEELEY Z, CHEREPY N, PAYNE S. Two-step sintering of Gd03Lu16Eu01O3 transparent ceramic scintillator[J]. Opt Mater Express, 2013, 3(7): 908.
[18] [18] MAHLIK S, KUKLI?SKI B, GRINBERG M, et al. Luminescence and luminescence kinetics of Gd3Ga5O12 Polycrystals doped with Cr3+ and Pr3+[J]. Acta Phys Pol A, 2010, 117(1): 117-121.
[19] [19] POPIELARSKI P, ZELER J, BOLEK P, et al. Radio-, thermo- and photoluminescence properties of Lu2O3: Eu and Lu2O3: Tb nanopowder and film scintillators[J]. Crystals, 2019, 9(3): 148.
[20] [20] LI Y Y, XU S Q. Ionic liquid-based hydrothermal synthesis of Lu2O3 and Lu2O3: Eu3+ microcrysals[J]. Solid State Sci, 2016, 59: 32-38.
[21] [21] THO? T, RUBE?OVá K, JAKE? V, et al. Lanthanide-doped Lu2O3 phosphors and scintillators with green-to-red emission[J]. J Lumin, 2019, 215: 116647.
[22] [22] TANG G W, ZHANG D, ZHANG F T, et al. Structure and luminescence properties of Tm3+ doped Barium gallo-germanate glass tailored by Lu2O3[J]. J Lumin, 2023, 257: 119771.
[23] [23] POKORNY P, NOVOTNY M, FITL P, et al. Thermally stimulated exo-electron emission and desorption from Lu2O3: Eu3+ surfaces[J]. Opt Mater, 2023, 137: 113556.
[24] [24] LIU Z Y, FENG Y G, CHEN H H, et al. Microstructure and properties characterization of Yb: Lu2O3 transparent ceramics from co-precipitated nano-powders[J]. Int J Appl Ceram Technol, 2023, 77: 1-11.
[25] [25] CHENG Z Q, WANG Y B, LIU X, et al. Component regulation and performance optimization of Al2O3-YAG:Ce composite ceramic phosphors for high-power laser lighting[J]. J Inorg Mater, 2022, 37(12): 1358-1364.
[26] [26] DU W B, LU B Q, LI Q L, et al. Effects of preparation atmosphere and doping concentration on scintillation and photoluminescence properties of Lu2O3: Eu scintillation single crystals[J]. Crystals, 2023, 13(4): 680.
[27] [27] SéVIN L, AUDOUARD L, RAZAFINDRAMANANA V, et al. Phase stabilisation, thermal expansion and ionic conductivity of high content rare earth oxide (Lu2O3, Y2O3 and Gd2O3) stabilised cubic hafnia[J]. J Eur Ceram Soc, 2023, 43(9): 4153-4166.
[28] [28] GARCíA RAMíREZ V M, GARCíA MURILLO A, DE J CARRILLO ROMO F, et al. Luminescent aerogels of Gd2O3: Eu3+ and Gd2O3: (Eu3+, Tb3+)[J]. Bull Mater Sci, 2023, 46(2): 1-10.
[29] [29] JEGADEESAN P, SEN S, PADMAPRABU C, et al. Morphological and optical investigations on Gd2O3 nanostructures[J]. Inorg Chem Commun, 2023, 150: 110493.
[30] [30] VENKATA PRASAD C, LABED M, ALAM SHAMIM SHAIKH M T, et al. Ga2O3-based X-ray detector and scintillators: A review[J]. Mater Today Phys, 2023, 35: 101095.
[31] [31] MOHAMED H E A, HKIRI K, KHENFOUCH M, et al. Optical properties of biosynthesized nanoscaled Eu2O3 for red luminescence applications[J]. J Opt Soc Am A Opt Image Sci Vis, 2020, 37(11): C73-C79.
[32] [32] KRSMANOVI? WHIFFEN R M, ANTI? ?, SPEGHINI A, et al. Structural and spectroscopic studies of Eu3+ doped Lu2O3-Gd2O3 solid solutions[J]. Opt Mater, 2014, 36(6): 1083-1091.
[33] [33] ZHU D Y, NIKL M, CHEWPRADITKUL W, et al. Development and prospects of garnet ceramic scintillators: A review[J]. J Adv Ceram, 2022, 11(12): 1825-1848.
[34] [34] LIU S P, FENG X Q, NIKL M, et al. Fabrication and scintillation performance of nonstoichiometric LuAG: Ce ceramics[J]. J Am Ceram Soc, 2015, 98(2): 510-514.
[35] [35] LIU Q, WANG W L, DAI Z F, et al. Fabrication and long persistent luminescence of Ce3+-Cr3+ co-doped yttrium aluminum gallium garnet transparent ceramics[J]. J Rare Earths, 2022, 40(11): 1699-1705.
[36] [36] ZHU D Y, CHEN X P, BEITLEROVA A, et al. Influence of calcium doping concentration on the performance of Ce, Ca: LuAG scintillation ceramics[J]. J Eur Ceram Soc, 2022, 42(13): 6075-6084.
[37] [37] SONG J, BAO B Y, WANG S, et al. The improved scintillation performances and X-ray imaging of Lu2O3: Pr3+ nanoparticles induced by Sm3+ doping[J]. J Lumin, 2023, 263: 119970.
Get Citation
Copy Citation Text
CHEN Yuyang, BI Yuan, ZHU Danyang, HE Nington, HU Chen, WANG Yanbin, ZHANG Fang, LI Jiang. Preparation and Performance of EuxLu1.4-xGd0.6O3 Transparent Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(3): 828
Category:
Received: Aug. 23, 2023
Accepted: --
Published Online: Aug. 5, 2024
The Author Email: Jiang LI (lijiang@mail.sic.ac.cn)
CSTR:32186.14.