Infrared and Laser Engineering, Volume. 47, Issue 12, 1230008(2018)

Effect of typical filters on return signals of spaceborne HRSL channel at 532 nm

Yu Xiao1,2, Min Min2, Zhang Xingying2, Meng Xiaoyang2, and Deng Xiaobo1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(29)

    [1] [1] Winker D M, Couch R H, Mccormick M P. An overview of LITE: NASA′s lidar in-space technology experiment[J]. Proceedings of the IEEE, 1996, 84(2): 164-180.

    [2] [2] Winker D M, Pelon J R, Mccormick M P. The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds[C]//International Asia-Pacific Environmental Remote Sensing, Remote Sensing of the Atmosphere, Ocean, Environment, and Space. International Society for Optics and Photonics, 2003: 1211-1229.

    [4] [4] Winker D M, Hunt W H, Mcgill M J. Initial performance assessment of CALIOP[J]. Geophysical Research Letters, 2007, 34(19): 228-262.

    [5] [5] Min M, Wang P, Campbell J R, et al. Midlatitude cirrus cloud radiative forcing over China[J]. Journal of Geophysical Research Atmospheres, 2010, 115(D20): 898-907.

    [6] [6] Pan H, Bu L, Kumar K R, et al. A new retrieval method for the ice water content of cirrus using data from the CloudSat and CALIPSO[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 161(7): 134-142.

    [7] [7] Shan Kunling, Liu Xinbo, Bu Lingbing, et al. Joint inversion method of cirrus physical properties using both Lidar and millimeter wave radar[J]. Infrared and Laser Engineering, 2015, 44(9): 2742-2746. (in Chinese)

    [8] [8] Fernald F G. Analysis of atmospheric lidar observations: some comments[J]. Applied Optics, 1984, 23(5): 000652.

    [9] [9] Ding Hongxing, Dai Liling, Sun Dongsong. Spatial distribution of aerosol in troposphere measured by lidar at slant range[J]. Infrared and Laser Engineering, 2010, 39(3): 442-446. (in Chinese)

    [10] [10] Omar A H, Winker D M, Kittaka C, et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(10): 1994-2014.

    [11] [11] Shipley S T, Tracy D H, Eloranta E W, et al. A high spectral resolution lidar to measure optical scattering properties of atmospheric aerosols, Part I: Instrumentation and theory[J]. Applied Optics, 1984, 22(23): 3716-3724.

    [12] [12] Grund C J, Eloranta E W. University of wisconsin high spectral resolution lidar[J]. Optical Engineering, 1991, 30(30): 6-12.

    [13] [13] Liu D, Hostetler C, Miller I, et al. System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar[J]. Optics Express, 2012, 20(2): 1406.

    [14] [14] She C Y, Alvarez Ii R J, Caldwell L M, et al. High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles[J]. Applied Physics B, 1992, 17(7): 541-543.

    [15] [15] Liu Z, Matsui I, Sugimoto N. High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements[J]. Optical Engineering, 1999, 38(10): 1661-1670.

    [16] [16] Silva A, Swap R, Maring H, et al. ACE 2011-2015 progress report and future outlook[D]. US: NASA, 2017.

    [17] [17] Eloranta E W, Roesler F L, Sroga J T. High Spectral Resolution Lidar[M]. Berlin: Springer, 1983: 308-315.

    [18] [18] Vaughan M A, Powell K A, Kuehn R E, et al. Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(10): 2034-2050.

    [19] [19] Jursa A S. Handbook of geophysics and the space environment[D]. Germany: Research Gate, 1985.

    [20] [20] Bodhaine B A, Wood N B, Dutton E G, et al. On Rayleigh optical depth calculations[J]. Journal of Atmospheric and Oceanic Technology, 1999, 16(11): 1854-1861.

    [21] [21] Cairo F, Di D G, Adriani A, et al. Comparison of various linear depolarization parameters measured by lidar[J]. Applied Optics, 1999, 38(21): 4425-4432.

    [22] [22] Serdyuchenko A, Gorshelev V, Weber M, et al. New broadband high-resolution ozone absorption crosssections[J]. Spectroscopy Europe, 2011(6): confETE11S.

    [23] [23] Liu Z, Voelger P, Sugimoto N. Simulations of the observation of clouds and aerosols with the experimental lidar in space Equipment system[J]. Applied Optics, 2000, 39(18): 3120-3137.

    [24] [24] Hernandez G. Analytical description of a Fabry-Perot photoelectric spectrometer[J]. Applied Optics, 1966, 5(11): 1745-1748.

    [25] [25] Forkey J N, Lempert W R, Miles R B. Corrected and calibrated I2 absorption model at frequency-doubled Nd: YAG laser wavelengths[J]. Applied Optics, 1997, 36(27): 6729-6738.

    [26] [26] Esselborn M, Wirth M, Fix A, et al. Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients[J]. Applied Optics, 2008, 47(3): 346-358.

    [27] [27] Cheng Z, Liu D, Yang Y, et al. Interferometric filters for spectral discrimination in high-spectral-resolution lidar: performance comparisons between Fabry-Perot interferometer and field-widened Michelson interferometer[J]. Applied Optics, 2013, 52(32): 7838-7850.

    [28] [28] Hair J W, Hostetler C A, Cook A L, et al. Airborne high spectral resolution lidar for profiling aerosol optical properties[J]. Applied Optics, 2008, 47(36): 6734-6752.

    [29] [29] Bu L, Pan H, Kumar K R, et al. LIDAR and millimeter-wave cloud RADAR(MWCR) techniques for joint observations of cirrus in Shouxian (32.56°N, 116.78°E), China[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 148: 64-73.

    Tools

    Get Citation

    Copy Citation Text

    Yu Xiao, Min Min, Zhang Xingying, Meng Xiaoyang, Deng Xiaobo. Effect of typical filters on return signals of spaceborne HRSL channel at 532 nm[J]. Infrared and Laser Engineering, 2018, 47(12): 1230008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: 激光雷达技术

    Received: Jul. 5, 2018

    Accepted: Aug. 3, 2018

    Published Online: Jan. 10, 2019

    The Author Email:

    DOI:10.3788/irla201847.1230008

    Topics