Infrared and Laser Engineering, Volume. 47, Issue 12, 1230008(2018)
Effect of typical filters on return signals of spaceborne HRSL channel at 532 nm
[1] [1] Winker D M, Couch R H, Mccormick M P. An overview of LITE: NASA′s lidar in-space technology experiment[J]. Proceedings of the IEEE, 1996, 84(2): 164-180.
[2] [2] Winker D M, Pelon J R, Mccormick M P. The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds[C]//International Asia-Pacific Environmental Remote Sensing, Remote Sensing of the Atmosphere, Ocean, Environment, and Space. International Society for Optics and Photonics, 2003: 1211-1229.
[4] [4] Winker D M, Hunt W H, Mcgill M J. Initial performance assessment of CALIOP[J]. Geophysical Research Letters, 2007, 34(19): 228-262.
[5] [5] Min M, Wang P, Campbell J R, et al. Midlatitude cirrus cloud radiative forcing over China[J]. Journal of Geophysical Research Atmospheres, 2010, 115(D20): 898-907.
[6] [6] Pan H, Bu L, Kumar K R, et al. A new retrieval method for the ice water content of cirrus using data from the CloudSat and CALIPSO[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 161(7): 134-142.
[7] [7] Shan Kunling, Liu Xinbo, Bu Lingbing, et al. Joint inversion method of cirrus physical properties using both Lidar and millimeter wave radar[J]. Infrared and Laser Engineering, 2015, 44(9): 2742-2746. (in Chinese)
[8] [8] Fernald F G. Analysis of atmospheric lidar observations: some comments[J]. Applied Optics, 1984, 23(5): 000652.
[9] [9] Ding Hongxing, Dai Liling, Sun Dongsong. Spatial distribution of aerosol in troposphere measured by lidar at slant range[J]. Infrared and Laser Engineering, 2010, 39(3): 442-446. (in Chinese)
[10] [10] Omar A H, Winker D M, Kittaka C, et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(10): 1994-2014.
[11] [11] Shipley S T, Tracy D H, Eloranta E W, et al. A high spectral resolution lidar to measure optical scattering properties of atmospheric aerosols, Part I: Instrumentation and theory[J]. Applied Optics, 1984, 22(23): 3716-3724.
[12] [12] Grund C J, Eloranta E W. University of wisconsin high spectral resolution lidar[J]. Optical Engineering, 1991, 30(30): 6-12.
[13] [13] Liu D, Hostetler C, Miller I, et al. System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar[J]. Optics Express, 2012, 20(2): 1406.
[14] [14] She C Y, Alvarez Ii R J, Caldwell L M, et al. High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles[J]. Applied Physics B, 1992, 17(7): 541-543.
[15] [15] Liu Z, Matsui I, Sugimoto N. High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements[J]. Optical Engineering, 1999, 38(10): 1661-1670.
[16] [16] Silva A, Swap R, Maring H, et al. ACE 2011-2015 progress report and future outlook[D]. US: NASA, 2017.
[17] [17] Eloranta E W, Roesler F L, Sroga J T. High Spectral Resolution Lidar[M]. Berlin: Springer, 1983: 308-315.
[18] [18] Vaughan M A, Powell K A, Kuehn R E, et al. Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(10): 2034-2050.
[19] [19] Jursa A S. Handbook of geophysics and the space environment[D]. Germany: Research Gate, 1985.
[20] [20] Bodhaine B A, Wood N B, Dutton E G, et al. On Rayleigh optical depth calculations[J]. Journal of Atmospheric and Oceanic Technology, 1999, 16(11): 1854-1861.
[21] [21] Cairo F, Di D G, Adriani A, et al. Comparison of various linear depolarization parameters measured by lidar[J]. Applied Optics, 1999, 38(21): 4425-4432.
[22] [22] Serdyuchenko A, Gorshelev V, Weber M, et al. New broadband high-resolution ozone absorption crosssections[J]. Spectroscopy Europe, 2011(6): confETE11S.
[23] [23] Liu Z, Voelger P, Sugimoto N. Simulations of the observation of clouds and aerosols with the experimental lidar in space Equipment system[J]. Applied Optics, 2000, 39(18): 3120-3137.
[24] [24] Hernandez G. Analytical description of a Fabry-Perot photoelectric spectrometer[J]. Applied Optics, 1966, 5(11): 1745-1748.
[25] [25] Forkey J N, Lempert W R, Miles R B. Corrected and calibrated I2 absorption model at frequency-doubled Nd: YAG laser wavelengths[J]. Applied Optics, 1997, 36(27): 6729-6738.
[26] [26] Esselborn M, Wirth M, Fix A, et al. Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients[J]. Applied Optics, 2008, 47(3): 346-358.
[27] [27] Cheng Z, Liu D, Yang Y, et al. Interferometric filters for spectral discrimination in high-spectral-resolution lidar: performance comparisons between Fabry-Perot interferometer and field-widened Michelson interferometer[J]. Applied Optics, 2013, 52(32): 7838-7850.
[28] [28] Hair J W, Hostetler C A, Cook A L, et al. Airborne high spectral resolution lidar for profiling aerosol optical properties[J]. Applied Optics, 2008, 47(36): 6734-6752.
[29] [29] Bu L, Pan H, Kumar K R, et al. LIDAR and millimeter-wave cloud RADAR(MWCR) techniques for joint observations of cirrus in Shouxian (32.56°N, 116.78°E), China[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 148: 64-73.
Get Citation
Copy Citation Text
Yu Xiao, Min Min, Zhang Xingying, Meng Xiaoyang, Deng Xiaobo. Effect of typical filters on return signals of spaceborne HRSL channel at 532 nm[J]. Infrared and Laser Engineering, 2018, 47(12): 1230008
Category: 激光雷达技术
Received: Jul. 5, 2018
Accepted: Aug. 3, 2018
Published Online: Jan. 10, 2019
The Author Email: