Optics and Precision Engineering, Volume. 27, Issue 12, 2722(2019)

Semantic segmentation based on DeepLabV3+ and superpixel optimization

REN Feng-lei1...2,*, HE Xin1, WEI Zhong-hui1, L You1, and LI Mu-yu12 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(23)

    [1] [1] LADICKY L, SHI J, POLLEFEYS M.Pulling things out of perspective [C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2014: 89-96.

    [2] [2] XIAO J, QUAN L.Multiple view semantic segmentation for street view images [C]. 2009 IEEE 12th international conference on computer vision, 2009: 686-693.

    [3] [3] SHOTTON J, JOHNSON M, CIPOLLA R.Semantic texton forests for image categorization and segmentation [C]. 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008: 1-8.

    [4] [4] TU Z, BAI X. Auto-context and its application to high-level vision tasks and 3d brain image segmentation [J]. IEEE transactions on pattern analysis and machine intelligence, 2009, 32(10): 1744-1757.

    [5] [5] FULKERSON B, VEDALDI A, SOATTO S.Class segmentation and object localization with superpixel neighborhoods [C]. 2009 IEEE 12th international conference on computer vision, 2009: 670-677.

    [6] [6] KRIZHENVSHKY A, SUTSKEVER I, HINTON G.Imagenet classification with deep convolutional networks [C]. Proceedings of the Conference Neural Information Processing Systems (NIPS), 1097-1105.

    [7] [7] WU Z, SHEN C, VAN DEN HENGEL A. Wider or deeper: Revisiting the resnet model for visual recognition [J]. Pattern Recognition, 2019, 90: 119-133.

    [9] [9] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [J]. arXiv preprint arXiv: 1409.1556, 2014.

    [11] [11] LONG J, SHELHAMER E, DARRELL T.Fully convolutional networks for semantic segmentation [C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2015: 3431-3440.

    [12] [12] RONNEBERGER O, FISCHER P, BROX T.U-net: Convolutional networks for biomedical image segmentation [C]. International Conference on Medical image computing and computer-assisted intervention, 2015: 234-241.

    [13] [13] BADRINARAYANAN V, KENDALL A, CIPOLLA R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation [J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(12): 2481-2495.

    [14] [14] CHEN L-C, PAPANDREOU G, KOKKINOS I, et al.. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs [J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 40(4): 834-848.

    [15] [15] CHEN L-C, PAPANDREOU G, SCHROFF F, et al.. Rethinking atrous convolution for semantic image segmentation [J]. arXiv preprint arXiv: 1706.05587, 2017.

    [16] [16] CHEN L-C, ZHU Y, PAPANDREOU G, et al..Encoder-decoder with atrous separable convolution for semantic image segmentation [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 801-818.

    [17] [17] REN F, HE X, WER Z, et al.. Fusing appearance and prior cues for road detection [J]. Applied Sciences, 2019, 9(5): 996.

    [18] [18] WEI Z, YI F, WEI X, et al.. An improved image semantic segmentation method based on superpixels and conditional random fields [J]. Applied Sciences, 2018, 8(5): 837.

    [19] [19] HE K, ZHANG X, REN S, et al..Deep residual learning for image recognition [C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2016: 770-778.

    [20] [20] ACHANTA R, SHAJI A, SMITH K, et al.. SLIC superpixels compared to state-of-the-art superpixel methods [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012, 34(11): 2274-2282.

    [21] [21] LIU W, RABINOVICH A, BERG AC. Parsenet: Looking wider to see better [J]. arXiv preprint arXiv: 1506.04579, 2015.

    [22] [22] EVERINGHAM M, VAN GOOL L, WILLIAMS CK, et al.. The pascal visual object classes (voc) challenge [J]. International journal of computer vision, 2010, 88(2): 303-338.

    [23] [23] HARIHARAN B, ARBELAEZ P, BOURDEV L, et al.. Semantic contours from inverse detectors [C]. 2011 International Conference on Computer Vision, 2011: 991-998.

    CLP Journals

    [1] MAO Lin, REN Feng-zhi*, YANG Da-wei, ZHANG Ru-bo. IN FNet: D eep in stance featu re ch ain learning netw ork for pan op tic segm en tation[J]. Optics and Precision Engineering, 2020, 28(12): 2665

    [2] LEI Jun-feng, HE Rui, XIAO Jin-sheng. Driving obstacles prediction network merged with spatial attention[J]. Optics and Precision Engineering, 2020, 28(8): 1850

    Tools

    Get Citation

    Copy Citation Text

    REN Feng-lei, HE Xin, WEI Zhong-hui, L You, LI Mu-yu. Semantic segmentation based on DeepLabV3+ and superpixel optimization[J]. Optics and Precision Engineering, 2019, 27(12): 2722

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 24, 2019

    Accepted: --

    Published Online: May. 12, 2020

    The Author Email: Feng-lei REN (renfenglei15@mails.ucas.edu.cn)

    DOI:10.3788/ope.20192712.2722

    Topics