Chinese Journal of Quantum Electronics, Volume. 33, Issue 6, 737(2016)
Geometric quantum discord in double Jaynes-Cummings model
[7] [7] Ollivier H, Zurek W H. Introducing quantum discord [J]. Phys. Rev. Lett., 2001, 88(1): 017901.
[8] [8] Chen Qing, Zhang Chengjie, Yu Sixia, et al. Quantum discord of two-qubit X-states [J]. Phys. Rev. A, 2011, 84(4): 10814-10822.
[9] [9] Qian Yi, Xu Jingbo. Controlling quantum discord dynamics in cavity QED systems by applying a classical driving field with phase decoherence [J]. Chin. Phys. B, 2012, 21(3): 56-62.
[10] [10] Wang Bo, Xu Zhenyu, Chen Zeqian, et al. Non-Markovian effect on the quantum discord [J]. Phys. Rev. A, 2010, 81(1): 15780-15787.
[13] [13] Dakic B, Vedral V, Brukner C. Necessary and sufficient condition for nonzero quantum discord [J]. Phys. Rev. Lett., 2010, 105(19): 4649-4653.
[16] [16] Luo S, Fu S. Geometric measure of quantum discord [J]. Phys. Rev. A, 2010, 82(3): 118-129.
[17] [17] Luo Shunlong, Fu Shuangshuang. Evaluating the geometric measure of quantum discord [J]. Theoret. Math. Phys., 2012, 171: 870-878.
[19] [19] Li Zhijian, Li Junqi, Jin Yanhong, et al. Time evolution and transfer of entanglement between an isolated atom and a Jaynes-Cummings atom [J]. Journal of Physics B, 2007, 40(17): 3401-3411.
Get Citation
Copy Citation Text
Patiguli Mamuti, Aihemaiti Abulizi, Maimaitiyiming Tusun, Parouke Paerhati, Maimaiti Abulizi. Geometric quantum discord in double Jaynes-Cummings model[J]. Chinese Journal of Quantum Electronics, 2016, 33(6): 737
Category:
Received: May. 16, 2016
Accepted: --
Published Online: Jan. 3, 2017
The Author Email: Mamuti Patiguli (363326379@qq.com)