Acta Optica Sinica, Volume. 39, Issue 3, 0330003(2019)

Optical System Design of High Throughput Multi-Channel Spectrograph for Very Large Telescope

Hangxin Ji1,2,3、*, Yongtian Zhu1,2, and Zhongwen Hu1,2
Author Affiliations
  • 1 Nanjing Institute of Astronomical Optics & Technology, National Astronomical Observatories, Chinese Academy of Sciences, Nanjing, Jiangsu 210042, China;
  • 2 Key Laboratory of Astronomical Optics & Technology, Chinese Academy of Sciences, Nanjing, Jiangsu 210042, China;
  • 3 University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(12)
    Working principle of VPHG
    Design principle of multi-channel spectrograph
    Relationship between telescope diameter and camera focal ratio
    Relationship between different parameters of multi-channel spectrograph. (a) Collimator pupil size and VPHG blazing angle; (b) camera focal ratio and sampling pixel; (c) detector size and number of multi-channel of spectrograph at different camera focal ratios
    Optical layout of multi-channel spectrograph for 4 m telescope
    Optical layout of camera system in red channel
    Spot diagram of spectrograph in red channel
    Enclosed energy of spot diagram with different wavelengths. (a) 0.695000 μm; (b) 0.850000 μm; (c) 1.000000 μm
    Theoretical efficiency of multi-channel spectrograph
    • Table 1. Main parameters of spectrograph with broadband and high throughput for 4 m telescope

      View table

      Table 1. Main parameters of spectrograph with broadband and high throughput for 4 m telescope

      Sub-systemMain description
      Slit1″×3'
      Collimatorfcoll=1755 mm, Fcoll=13
      VPHGBlue:1600mm-1,20°,350-500 nmGreen:1140mm-1,20°,490-705 nmRed: 805mm-1,20°,695-1000 nm
      Camerafcam=229.5 mm,Fcam=1.7, FFOV=15°
      Detector4000×2000@15 μm
    • Table 2. Glass materials and aspherical surface number of camera system in each channel

      View table

      Table 2. Glass materials and aspherical surface number of camera system in each channel

      CameraLens materialin blue channelLens materialin green channelLens materialin red channel
      Lens 1S-FPL53S-FPL53S-FPL53
      Lens 2PBM2Y**F4ZF13**
      Lens 3S-FPL53S-FPL53H-K9L
      Lens 4H-K9LH-K9LH-K9L
      Lens 5PBM2YH-K9LS-FPL53
      Lens 6S-FPL51YH-K9LH-K9L
      Notes: *represents the first surface is aspherical; **represents the second surface is aspherical.
    • Table 3. Distance between ghost image and detectormm

      View table

      Table 3. Distance between ghost image and detectormm

      NO. of lens surface123456789101112131415
      1
      2207
      3224123
      4100398316
      512543833380
      62901300257218148
      714149335310883182
      8-53831326723715265111
      91495383671189718763157
      101555913801241041917716657
      111751659476142119206942117661
      1292389311-5224815712598877647
      13163727407132112197871827050445115
      141647564111331121988818571521981238
      15166816420135114199891897255861391812
    Tools

    Get Citation

    Copy Citation Text

    Hangxin Ji, Yongtian Zhu, Zhongwen Hu. Optical System Design of High Throughput Multi-Channel Spectrograph for Very Large Telescope[J]. Acta Optica Sinica, 2019, 39(3): 0330003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Oct. 8, 2018

    Accepted: Nov. 19, 2018

    Published Online: May. 10, 2019

    The Author Email:

    DOI:10.3788/AOS201939.0330003

    Topics