High Power Laser and Particle Beams, Volume. 33, Issue 4, 043002(2021)
Agile design of cross-section enhancement of a conducting plate radar through active metasurface
[1] Shang Yuping, Shen Zhongxiang. Polarization-independent backscattering enhancement of cylinders based on conformal gradient metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 65, 2386-2396(2017).
[2] Shang Yuping, Xiao Shaoqiu, Shen Zhongxiang. Edge-on backscattering enhancement based on quasi-superdirective reradiation[J]. IEEE Antennas and Wireless Propagation Letters, 14, 539-542(2014).
[3] He Yun, Feng Weisen, Guo Sai, et al. Design of a dual-band electromagnetic absorber with frequency selective surfaces[J]. IEEE Antennas and Wireless Propagation Letters, 19, 841-845(2020).
[4] Edries M, Mohamed H A, Hekal S S, et al. A new compact quad-band metamaterial absorber using interlaced I/Square resonators: design, fabrication, and characterization[J]. IEEE Access, 8, 143723-143733(2020).
[5] Chen Jianlin, Shang Yuping, Liao Cheng. Double-layer circuit analog absorbers based on resistor-loaded square-loop arrays[J]. IEEE Antennas and Wireless Propagation Letters, 17, 591-595(2018).
[6] Shang Yuping, Shen Zhongxiang, Xiao Shaoqiu. On the design of single-layer circuit analog absorber using double-square-loop array[J]. IEEE Transactions on Antennas and Propagation, 61, 6022-6029(2013).
[8] Bashiri M, Ghobadi C, Nourinia J, et al. WiMAX, WLAN, and X-band filtering mechanism: simple-structured triple-band frequency selective surface[J]. IEEE Antennas and Wireless Propagation Letters, 16, 3245-3248(2017).
[9] Esparza N, Alcón P, Herrán L F, et al. Substrate integrated waveguides structures using frequency selective surfaces operating in stop-band (SBFSS-SIW)[J]. IEEE Microwave and Wireless Components Letters, 26, 113-115(2016).
[10] Cao Yue, Che Wenquan, Yang Wanchen, et al. Novel wideband polarization rotating metasurface element and its application for wideband folded reflectarray[J]. IEEE Transactions on Antennas and Propagation, 68, 2118-2127(2020).
[11] Zhu H L, Chung K L, Ding Can, et al. Polarization-rotated waveguide antennas for base-station applications[J]. IEEE Antennas and Wireless Propagation Letters, 16, 1545-1548(2017).
[12] Yang Wanchen, Tam K W, Choi W W, et al. Novel polarization rotation technique based on an artificial magnetic conductor and its application in a low-profile circular polarization antenna[J]. IEEE Transactions on Antennas and Propagation, 62, 6206-6216(2014).
[13] Liang Jiajun, Huang Guanlong, Zhao Jianing, et al. Wideband phase-gradient metasurface antenna with focused beams[J]. IEEE Access, 7, 20767-20772(2019).
[14] Liu Kaiting, Ge Yuehe, Lin Chengxiu. A compact wideband high-gain metasurface-lens-corrected conical horn antenna[J]. IEEE Antennas and Wireless Propagation Letters, 18, 457-461(2019).
[16] Wu Guozhang, Yu Wenqi, Lin Tao, et al. Ultra-wideband RCS reduction based on non-planar coding diffusive metasurface[J]. Materials, 13, 4773(2020).
[17] Liu Shuo, Xu Hexiu, Zhang Haochi, et al. Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface[J]. Optics Express, 22, 13403-13417(2014).
[18] Zhao Jie, Cheng Qiang, Chen Jie, et al. A tunable metamaterial absorber using varactor diodes[J]. New Journal of Physics, 15, 043049(2013).
[19] Luo Zhangjie, Long Jiang, Chen Xing, et al. Electrically tunable metasurface absorber based on dissipating behavior of embedded varactors[J]. Applied Physics Letters, 109, 071107(2016).
[20] Zhu Bo O, Chen Ke, Jia Nan, et al. Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface[J]. Scientific Reports, 4, 4971(2014).
[21] [21] Feng Yijun, Zhu Bo, Chen Ke, et al. Dynamically controlling electromagic wave with tunable metasurfaces[C]Proceedings of the 2015 International Symposium on Antennas Propagation (ISAP). 2015.
[22] Lv Yanhe, Ding Xiao, Wang Bingzhong, et al. Wideband polarisation-insensitive metasurface with tunable near-field scattering focusing characteristic[J]. Electronics Letters, 55, 776-777(2019).
[23] Liu Fu, Tsilipakos O, Pitilakis A, et al. Intelligent metasurfaces with continuously tunable local surface impedance for multiple reconfigurable functions[J]. Physical Review Applied, 11, 044024(2019).
[24] Wu Zhanni, Ra'di Y, Grbic A. Tunable metasurfaces: a polarization rotator design[J]. Physical Review X, 9, 011036(2019).
[25] Yoo M, Lim S. Active metasurface for controlling reflection and absorption properties[J]. Applied Physics Express, 7, 112204(2014).
[26] Bensafieddine D, Djerfaf F, Chouireb F, et al. Design of tunable microwave transmission lines using metamaterial cells[J]. Applied Physics A, 123, 248(2017).
[27] [27] Wu P C, Cai Hong, Gu Yuong, et al. Dynamic metasurface f broadb electromagic modulat in reflection[C]Proceedings of the 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems. 2016: 230233.
[28] Odit M, Kapitanova P, Andryieuski A, et al. Experimental demonstration of water based tunable metasurface[J]. Applied Physics Letters, 109, 011901(2016).
[29] Yang Hujiang, Yu Tianlin, Wang Qingmin, et al. Wave manipulation with magnetically tunable metasurfaces[J]. Scientific Reports, 7, 5441(2017).
[31] Yang Xiaoqing, Zhang Di, Wu Shiyue, et al. Reconfigurable all-dielectric metasurface based on tunable chemical systems in aqueous solution[J]. Scientific Reports, 7, 3190(2017).
[32] Sun Lili, Zhang Hao, Dong Guohua, et al. Dynamically tunable terahertz anomalous refraction and reflection based on graphene metasurfaces[J]. Optics Communications, 446, 10-15(2019).
[33] Yao Wei, Tang Linlong, Wang Jun, et al. Spectrally and spatially tunable terahertz metasurface lens based on graphene surface plasmons[J]. IEEE Photonics Journal, 10, 4800909(2018).
[34] Arbabi E, Arbabi A, Kamali S M, et al. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 9, 812(2018).
[35] Du Zhiyuan, Hu Bin, Liu Weiguang, et al. Tunable beam deflector by mutual motion of cascaded bilayer metasurfaces[J]. Journal of Optics, 21, 115101(2019).
[36] Shang Yuping, Lei Xue, Liao Cheng, et al. Frequency-selective structures with suppressed reflection through passive phase cancellation[J]. IEEE Transactions on Antennas and Propagation, 68, 1192-1197(2020).
[37] Modi A Y, Balanis C A, Birtcher C R, et al. New class of RCS-reduction metasurfaces based on scattering cancellation using array theory[J]. IEEE Transactions on Antennas and Propagation, 67, 298-308(2019).
[38] Yu Jun, Jiang Wen, Gong Shuxi. Wideband angular stable absorber based on spoof surface plasmon polariton for RCS reduction[J]. IEEE Antennas and Wireless Propagation Letters, 19, 1058-1062(2020).
[39] Sharma A, Dwari S, Kanaujia B K, et al. In-band RCS reduction and isolation enhancement of a 24 GHz radar antenna using metamaterial absorber for sensing and automotive radar applications[J]. IEEE Sensors Journal, 20, 13086-13093(2020).
[42] Shang Yuping, Shen Zhongxiang, Feng Keming. Enhancement of backscattering by a conducting cylinder coated with gradient metasurface[J]. Journal of Applied Physics, 120, 045109(2016).
[43] Shang Yuping, Shen Zhongxiang. Electromagnetic retroreflection augmented by spherical and conical metasurfaces[J]. Journal of Applied Physics, 122, 205104(2017).
[44] Yu Nanfang, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).
Get Citation
Copy Citation Text
Sihao Wang, Cheng Liao, Yuping Shang, Runwu Zhang. Agile design of cross-section enhancement of a conducting plate radar through active metasurface[J]. High Power Laser and Particle Beams, 2021, 33(4): 043002
Category: High Power Microwave Technology
Received: Dec. 10, 2020
Accepted: --
Published Online: Jun. 24, 2021
The Author Email: Liao Cheng (c.liao@swjtu.edu.cn)