Nano-Micro Letters, Volume. 16, Issue 1, 252(2024)
A Review of Anode Materials for Dual-Ion Batteries
[16] [16] J. Liu, Y. Wang, N. Jiang, B. Wen, C. Yang et al., Vacancies-regulated Prussian blue analogues through precipitation conversion for cathodes in sodium-ion batteries with energy densities over 500 Wh/kg. Angew. Chem. Int. Ed. e202400214 (2024).
[17] [17] D. Zhang, H. Xu Nickel modified TiO2/C nanodisks with defective and near-amorphous structure for high-performance sodium-ion batteries. Battery Energy 3, 20230032 (2024).
[19] [19] Y. Gao, W. Li, B. Ou, S. Zhang, H. Wang et al., A dilute fluorinated phosphate electrolyte enables 4.9V-class potassium ion full batteries. Adv. Funct. Mater. 33, 2305829 (2023).
[49] [49] F.P. Mccullough, A.F. Beale, Secondary electrical energy storage device and electrode therefor. US04865931A. 1989.
[62] [62] X. Tong, X. Ou, N. Wu, H. Wang, J. Li et al., High oxidation potential ≈6.0V of concentrated electrolyte toward high-performance dual-ion battery. Adv. Energy Mater. 11, 2100151 (2021).
[79] [79] X. Li, X. Ou, Y. Tang, 6.0 V High-voltage and concentrated electrolyte toward high energy density K-based dual-graphite battery. Adv. Energy Mater. 10, 2002567 (2020).
[83] [83] X.M. Nguyen Thi, K.M. Le, Q. Phung, D.Q. Truong, H. Van Nguyen et al., Improving the electrochemical performance of lithium-ion battery using silica/carbon anode through prelithiation techniques. Battery Energy 2, 20230003 (2023).
[88] [88] T. Ke, S. Yun, K. Wang, T. Xing, J. Dang et al., Constructing bimetal, alloy, and compound-modified nitrogen-doped biomass-derived carbon from coconut shell as accelerants for boosting methane production in bioenergy system. Energy Mater. 4, 400011 (2024).
[94] [94] Y. Chen, H. Sun, J. Guo, Y. Zhao, H. Yang et al., Research on carbon-based and metal-based negative electrode materials via DFT calculation for high potassium storage performance: a review. Energy Mater. 3, 300044 (2023).
[112] [112] G.G. Bizuneh, A.M.M. Adam, J. Ma Progress on carbon for electrochemical capacitors. Battery Energy 2, 20220021 (2023).
[118] [118] F. Sun, X. Liu, H.B. Wu, L. Wang, J. Gao et al., In situ high-level nitrogen doping into carbon nanospheres and boosting of capacitive charge storage in both anode and cathode for a high-energy 4.5 V full-carbon lithium-ion capacitor. Nano Lett. 18, 3368–3376 (2018).
[122] [122] S. Trano, D. Versaci, M. Castellino, M. Fontana, L. Fagiolari et al., Exploring nature-behaviour relationship of carbon black materials for potassium-ion battery electrodes. Energy Mater. 4, 400008 (2024).
[128] [128] Y. Guo, C. Liu, L. Xu, K. Huang, H. Wu et al., A cigarette filter-derived nitrogen-doped carbon nanoparticle coating layer for stable Zn-ion battery anodes. Energy Mater. 2, 200032 (2022).
[140] [140] M. Shaker, T. Shahalizade, A. Mumtaz, M. Hemmati Saznaghi, S. Javanmardi et al., A review on the role of graphene quantum dots and carbon quantum dots in secondary-ion battery electrodes. FlatChem 40, 100516 (2023).
[141] [141] F. Wang, Z. Liu, P. Zhang, H. Li, W. Sheng et al., Dual-graphene rechargeable sodium battery. Small 13, (2017).
[143] [143] Li, G.; Guo S.; Xiang B.; Mei S.; Zheng Y et al., Recent advances and perspectives of microsized alloying-type porous anode materials in high-performance Li- and Na-ion batteries. Energy Mater. 2, 200020 (2022).
[151] [151] C. Han, G. Chen, Y. Ma, J. Ma, X. Shui et al., Strategies towards inhibition of aluminum current collector corrosion in lithium batteries. Energy Mater. 3, 300052 (2023).
[154] [154] S. Peng, X. Zhou, S. Tunmee, Z. Li, P. Kidkhunthod. Amorphous carbon nano- interface-modified aluminum anodes for high-performance dual-ion batteries. ACS Sustain Chem. Eng. 9, 3710-3717 (2021).
[156] [156] T. Tao, Z. Zheng, Y. Gao, B. Yu, Y. Fan et al., Understanding the role of interfaces in solid-state lithium-sulfur batteries. Energy Mater. 2, 35 (2022).
[161] [161] C. Jiang, X. Meng, Y. Zheng, J. Yan, Z. Zhou et al., High-performance potassium-ion-based full battery enabled by an ionic-drill strategy. CCS Chem. 3, 85–94 (2021).
[167] [167] T. Li, X. Huang, S. Lei, J. Zhang, X. Li et al., Two-dimensional nitrogen and phosphorus Co-doped mesoporous carbon-graphene nanosheets anode for high-performance potassium-ion capacitor. Energy Mater. 3, 300018 (2023).
[171] [171] C. Wu, S.-X. Dou, Y. Yu The state and challenges of anode materials based on conversion reactions for sodium storage. Small 14, 1703671 (2018).
[173] [173] J. Kang, Z. Zhao, H. Li, Y. Meng, B. Hu et al., An overview of aqueous zinc-ion batteries based on conversion-type cathodes. Energy Mater. 2, 200009 (2022).
[185] [185] J. Liu, N. Pei, X. Yang, R. Li, H. Hua et al., Recent advances in lithiophilic materials: material design and prospects for lithium metal anode application. Energy Mater. 3, 300024 (2023).
[192] [192] Yuan Y., S.D. Pu, Gao X., A.W. Robertson, The application of in situ liquid cell TEM in advanced battery research. Energy Mater. 3, 300034 (2023).
[196] [196] H. Wu, S. Luo, W. Zheng, L. Li, Y. Fang et al., Metal- and binder-free dual-ion battery based on green synthetic nano-embroidered spherical organic anode and pure ionic liquid electrolyte. Energy Mater. 4, 400015 (2024).
[201] [201] T. Huang, M. Long, J. Xiao, H. Liu, G. Wang, Recent research on emerging organic electrode materials for energy storage. Energy Mater. 1, 100009 (2022).
[203] [203] X. Li, Y. Wang, L. Lv, G. Zhu, Q. Qu et al., Electroactive organics as promising anode materials for rechargeable lithium ion and sodium ion batteries. Energy Mater. 2, 200014 (2022).
[211] [211] F.A. Obrezkov, A.F. Shestakov, S.G. Vasil’ev, K.J. Stevenson, P.A. Troshin, Polydiphenylamine as a promising high-energy cathode material for dual-ion batteries. J. Mater. Chem. A 9, 2864–2871 (2021).
[232] [232] Z. Zhao, Y. Lei, L. Shi, Z. Tian, M.N. Hedhili et al., A 2.75 V ammonium-based dual-ion battery. Angew. Chem. Int. Ed. 61, e202212941 (2022).
[234] [234] Zhu Y., Yin J., A.-H. Emwas, O.F. Mohammed, H.N. Alshareef, An aqueous Mg2+-based dual-ion battery with high power density. Adv. Funct. Mater. 31, 2107523 (2021).
[236] [236] L. Yang, J. Chen, S. Park, H. Wang, Recent progress on metal-organic framework derived carbon and their composites as anode materials for potassium-ion batteries. Energy Mater. 3, 300042 (2023).
[239] [239] J.H. Cho, Y. Kim, H.K. Yu, S.Y. Kim, Advancements in two-dimensional covalent organic framework nanosheets for electrocatalytic energy conversion: current and future prospects. Energy Mater. 4, 400013 (2024).
[244] [244] Y. Du, Y. Liu, F. Cao, H. Ye, Defect-induced-reduced Au quantum Dots@MXene decorated separator enables lithium-sulfur batteries with high sulfur utilization. Energy Mater. 4, 400014 (2024).
[247] [247] Y. Zhang, Q. Li, G. Zhang, T. Lv, P. Geng et al., Recent advances in the type, synthesis and electrochemical application of defective metal-organic frameworks. Energy Mater. 3, 300022 (2023).
[273] [273] Y. Liu, Y. Lu, A. Hossain Khan, G. Wang, Y. Wang et al., Redox-bipolar polyimide two-dimensional covalent organic framework cathodes for durable aluminium batteries. Angew. Chem. Int. Ed. 62, e202306091 (2023).
[290] [290] T. Tanaji Salunkhe, J.H. Yoo, S.-W. Lee, I.T. Kim, Exploring inexpensive electrodes for safer and evolved dual-ion batteries using modified electrolytes for enhanced energy density. J. Electroanal. Chem. 953, 118022 (2024).
[303] [303] X. Cheng, D. Li, Y. Jiang, F. Huang, S. Li, Advances in electrochemical energy storage over metallic bismuth-based materials. Materials (Basel) 17, 21 (2023).
Get Citation
Copy Citation Text
Hongzheng Wu, Shenghao Luo, Hubing Wang, Li Li, Yaobing Fang, Fan Zhang, Xuenong Gao, Zhengguo Zhang, Wenhui Yuan. A Review of Anode Materials for Dual-Ion Batteries[J]. Nano-Micro Letters, 2024, 16(1): 252
Category: Research Articles
Received: Apr. 22, 2024
Accepted: Jun. 29, 2024
Published Online: Jan. 23, 2025
The Author Email: Gao Xuenong (cexngao@scut.edu.cn), Zhang Zhengguo (cezhang@scut.edu.cn), Yuan Wenhui (cewhyuan@scut.edu.cn)