Chinese Journal of Quantum Electronics, Volume. 25, Issue 3, 307(2008)
Probabilistic remote preparation of a bipartite three-dimensional equatorial entangled state
[1] [1] Einstein A,et al. Can quantum-mechanical description of physical reality be considered complete [J].Phys.Rev.,1935,47: 777-780.
[2] [2] Schr dinger E. Die gegenwartige situation in der quantum-mechanik [J].Naturwissenschaften,1935,23: 807-812.
[3] [3] Bennett C H,Brassard G,Crepeau C,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels [J].Phys. Rev. Lett.,1993,70(13): 1895-1899.
[4] [4] Buzek V,Hillery M. Quantum copying:beyond the no-cloning theorem [J].Phys. Rev.,1996,A54(3): 1844-1852.
[5] [5] Bennett C H,et al. Communication via one and two-particle operators on Einstein-Podolsky-Rosen states [J].Phys. Rev. Lett.,1992,69(20): 2881-2884.
[6] [6] Ekert A K. Quantum cryptography based on Bell's theorem [J].Phys. Rev. Lett.,1991,67(6): 661-663.
[7] [7] Yan F L,Bai Y K. Probabilistic teleportation of one-particle state of S-level [J].Commun. Theor. Phys.,2003,40(3): 273-278.
[8] [8] Dai H Y,Zhang M,Li C Z. Probabilistic teleportation of an unknown entangled state of two three-level particles using a partially entangled state of three three-level particles [J].Phys. Lett. A,2004,323(5-6): 360-364.
[9] [9] Zhan Y B. Scheme for probabilistic teleportation of an unknown three-particle three-level entangled state [J].Commun. Theor. Phys.,2006,45(2): 275-278.
[10] [10] Li W L,Li C F,Guo G C. Probabilistic teleportation and entanglement matching [J].Phys. Rev. A,2000,61(3):034301.
[11] [11] Fang J,Lin Y,Zhu S,et al. Probabilistic teleportation of a three-particle state via three pairs of entangled particles [J].Phys. Rev. A,2003,67(1): 014305.
[12] [12] Zhan Y B,Fu H. Probabilistic teleportation of a four-particle entangled W state [J].Commun. Theor. Phys.,2005,43(3): 440-444.
[15] [15] Bennett C H,Divincenzo D P,Shor P W,et al. Remote state preparation [J].Phys. Rev. Lett.,2001,87(7):077902.
[16] [16] Lo H K. Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity [J].Phys. Rev. A,2000,62(1): 012313.
[17] [17] Pati A K. Minimum classical bit for remote preparation and measurement of a qubit [J].Phys. Rev. A,2000,63(1): 014302.
[18] [18] Shi B S,Tomita A. Remote state preparation of an entangled state [J].J. Opt. B: Quantum Semiclass Opt.,2002,4: 380-382.
[19] [19] Zheng Y Z,Gu Y J,Guo G C. Remote state preparation via a non-maximally entangled channel [J].Chin. Phys.Lett.,2002,19(1): 14-16.
[20] [20] Zeng B,Zhang P. Remote-state preparation in higher dimension and the parallelization manifold Sn-1 [J].Phys.Rev. A,2002,65(2): 022316.
[21] [21] Berry D W,Sanders B C. Optimal remote state preparation [J].Phys. Rev. Lett.,2003,90(5): 057901.
[22] [22] Leung D W,Shor P W. Oblivious remote state preparation [J].Phys. Rev. Lett.,2003,90(12): 127905.
[23] [23] Liu J M,Wang Y Z. Remote preparation of a two-particle entangled state [J].Phys. Lett. A,2003,316: 159-167.
[24] [24] Liu J M,et al. Scheme for remotely preparing multipartite equatorial entangled states in high dimensions [J].Inter. J. Quant. Inform.,2004,2: 237-245.
[25] [25] Ye M Y,Zheng Y S,Guo G C. Faithful remote state preparation using finite classical bits and a nonmaximally entangled state [J].Phys. Rev.,2004,69(2): 022310.
[26] [26] Huang Y X,Zhan M S. Remote preparation of multipartite pure state [J].Phys. Lett. A,2004,327: 404-408.
[27] [27] Zhan Y B. Remote state preparation of a Greenberger-Horne-Zeilinger class state [J].Commun. Theor. Phys.,2005,43(4): 637-640.
Get Citation
Copy Citation Text
SHI Jin, ZHAN You-bang. Probabilistic remote preparation of a bipartite three-dimensional equatorial entangled state[J]. Chinese Journal of Quantum Electronics, 2008, 25(3): 307
Category:
Received: May. 22, 2007
Accepted: --
Published Online: Jun. 7, 2010
The Author Email: Jin SHI (altsj@hytc.edu.cn)
CSTR:32186.14.