Optics and Precision Engineering, Volume. 31, Issue 13, 1973(2023)

Automatic segmentation of aggregate images with MET optimized by chaos SSA

Mengfei WANG1, Weixing WANG1、*, and Limin LI2、*
Author Affiliations
  • 1College of Information, Chang'an University, Xi'an70064, China
  • 2School of Electrical and Electronic Engineering, Wenzhou University, Wenzhou35035, China
  • show less
    Figures & Tables(15)
    Logistic mapping
    Aggregate segmentation images of MET at K=3
    Flowchart of LSSA-MET
    Schematic diagrams of F1 and F4 at D=2
    Convergence curves of optimization algorithms
    Aggregate images
    Segmented images
    Local segmentation results of aggregate image No.2 at K=6
    • Table 1. Evaluation parameters

      View table
      View in Article

      Table 1. Evaluation parameters

      方 法F1F2
      BestAVGSDT/sBestAVGSDT/s
      PSO8.75×10-113.47×10-96.08×10-969.9452.64×10-11.568.07×10-168.919
      GWO4.93×10-454.01×10-439.02×10-4364.1204.12×10-126.52×10-118.46×10-1160.733
      WOA1.07×10-1269.61×10-1116.10×10-11023.0232.07×10-14.79×102.44×1023.022
      MA9.48×10-121.43×10-103.42×10-10174.0362.81×104.24×105.54170.238
      SSA3.10×10-2582.22×10-501.71×10-4920.3161.03×10-531.96×10-101.25×10-920.210
      CASSA09.93×10-536.72×10-3919.1623.76×10-276.38×10-133.79×10-1120.661
      CDLSSA00041.61401.43×10-204040.259
      LSSA00021.36700020.497
      方 法F3F4
      BestAVGSDT/sBestAVGSDT/s
      PSO9.175.51×108.35×10+172.211-9.07×103-7.86×1036.17×10272.674
      GWO2.52×102.65×107.21×10-164.341-7.23×103-6.02×1035.78×10264.946
      WOA2.60×102.70×107.08×10-126.039-1.26×104-9.25×1031.46×10325.942
      MA8.06×10-14.68×105.19×10+1183.103-1.11×104-1.02×1043.19×102185.479
      SSA1.21×10-74.91×10-46.97×10-322.811-9.91×103-8.86×1031.73×10322.903
      CASSA1.19×10-77.40×10-42.01×10-322.548-9.29×103-9.76×1031.86×10322.432
      CDLSSA1.03×10-71.19×10-35.70×10-344.432-1.26×104-1.04×1041.03×10243.501
      LSSA1.16×10-84.45×10-41.91×10-323.025-1.26×104-1.08×1041.00×10223.011
      方 法F5F6
      BestAVGSDT/sBestAVGSDT/s
      PSO2.49×105.63×101.36×1070.8191.04×10-111.07×10-11.98×10-1100.284
      GWO07.56×10-12.0662.1351.68×10-62.53×10-21.52×10-294.983
      WOA00023.3416.67×10-41.66×10-21.13×10-250.255
      MA4.982.09×101.06×10176.5032.07×10-99.10×10-22.12×10-1256.946
      SSA00020.3502.39×10-101.21×10-62.46×10-648.751
      CASSA00020.5439.53×10-115.80×10-72.56×10-648.613
      CDLSSA00040.0182.58×10-115.10×10-71.65×10-688.256
      LSSA00020.1551.09×10-123.70×10-89.65×10-748.639
    • Table 2. 时LSSA-MET与SSA-MET的阈值和适应度值

      View table
      View in Article

      Table 2. 时LSSA-MET与SSA-MET的阈值和适应度值

      图像参数Renyi熵对称交叉熵Kapur熵
      LSSASSALSSASSALSSASSA
      No.1阈值

      41 74 115

      150 186 227

      35 62 95

      131 171 228

      30 56 92

      121 154 185

      32 55 92

      113 149 172

      41 73 102

      133 161 192

      39 72 94

      124 169 191

      适应度值24.356 624.237 9241 731.634266 481.176 924.124 923.974
      No.2阈值

      44 76 108

      167 142 199

      45 71 92

      114 137 189

      32 65 101

      131 157 183

      36 73 109

      133 150 178

      37 75 106

      134 162 194

      40 61 80

      118 151 190

      适应度值24.305 923.971 1239 635.992 8262 853.106 624.091 323.926 6
      No.3阈值

      37 71 140

      14 173 208

      39 71 104

      137 169 201

      25 43 81

      109 143 173

      29 53 91

      126 139 166

      38 70 105

      136 168 199

      43 77 100

      124 150 185

      适应度值24.416 424.409 5263 073.381 9284 278.489 624.142 123.989
      No.4阈值

      36 69 100

      131 163 193

      53 80 101

      122 149 176

      35 65 95

      126 157 183

      37 63 95

      126 154 183

      41 72 101

      129 159 190

      43 85 109

      134 160 183

      适应度值24.088 923.795 7183 027.266 6183 338.434 223.824 823.693 1
    • Table 3. PSNR values

      View table
      View in Article

      Table 3. PSNR values

      图像KRenyi EntropySymmetric Cross EntropyKapur EntropyFCM
      LSSASSALSSASSALSSASSA
      No.1213.013.112.012.012.412.412.8
      417.917.215.815.617.316.412.3
      624.422.717.315.419.219.48.46
      No 2213.313.212.412.413.113.111.3
      417.617.015.814.216.916.510.3
      620.415.717.416.419.216.87.51
      No.3213.513.511.511.512.612.612.4
      418.317.614.113.717.616.511.0
      622.921.614.714.721.317.06.41
      No.4213.013.013.613.512.612.612.0
      418.217.917.417.417.317.110.7
      621.516.819.018.720.219.07.69
      优值个数917071
    • Table 4. SSIM values

      View table
      View in Article

      Table 4. SSIM values

      图像KRenyi EntropySymmetric Cross EntropyKapur EntropyFCM
      LSSASSALSSASSALSSASSA
      No.123.29×10-13.31×10-13.15×10-13.15×10-13.20×10-13.20×10-13.66×10-1
      45.19×10-15.11×10-15.14×10-15.09×10-15.20×10-15.12×10-12.39×10-1
      66.21×10-15.95×10-16.35×10-15.97×10-16.32×10-16.11×10-12.68×10-2
      No 223.72×10-13.70×10-13.61×10-13.62×10-13.68×10-13.68×10-11.24×10-1
      45.61×10-15.56×10-15.56×10-15.30×10-15.59×10-15.56×10-13.81×10-1
      66.67×10-16.03×10-16.63×10-16.27×10-16.69×10-16.36×10-12.28×10-2
      No.323.52×10-13.52×10-13.31×10-13.31×10-13.48×10-13.48×10-16.17×10-1
      45.48×10-15.49×10-15.40×10-15.32×10-15.50×10-15.38×10-12.29×10-2
      66.78×10-16.74×10-16.47×10-16.21×10-16.74×10-16.46×10-13.47×10-3
      No.423.06×10-13.06×10-13.21×10-13.18×10-12.96×10-12.96×10-12.84×10-1
      45.18×10-15.09×10-15.10×10-15.02×10-15.09×10-15.04×10-11.46×10-1
      66.29×10-16.02×10-16.26×10-16.18×10-16.29×10-16.14×10-11.11×10-2
      优值个数829180
    • Table 5. FSIM values

      View table
      View in Article

      Table 5. FSIM values

      图像KRenyi EntropySymmetric Cross EntropyKapur EntropyFCM
      LSSASSALSSASSALSSASSA
      No.127.40×10-17.41×10-17.32×10-17.32×10-17.32×10-17.32×10-17.67×10-1
      48.81×10-18.77×10-18.76×10-18.66×10-18.81×10-18.69×10-17.08×10-1
      69.33×10-19.09×10-19.27×10-18.96×10-19.24×10-19.12×10-16.40×10-1
      No 227.59×10-17.57×10-17.49×10-17.50×10-17.52×10-17.53×10-17.66×10-1
      48.92×10-18.84×10-18.83×10-18.61×10-18.87×10-18.80×10-17.64×10-1
      69.32×10-18.87×10-19.19×10-18.89×10-19.33×10-19.17×10-16.90×10-1
      No.327.55×10-17.55×10-17.29×10-17.29×10-17.44×10-17.44×10-17.05×10-1
      48.91×10-18.84×10-18.77×10-18.69×10-18.90×10-18.76×10-16.41×10-1
      69.46×10-19.22×10-19.16×10-18.92×10-19.41×10-19.11×10-16.05×10-1
      No.427.21×10-17.21×10-17.34×10-17.33×10-17.12×10-17.11×10-16.93×10-1
      48.71×10-18.64×10-18.66×10-18.61×10-18.65×10-18.58×10-16.80×10-1
      69.28×10-18.87×10-19.21×10-19.11×10-19.25×10-19.02×10-16.72×10-1
      优值个数919191
    • Table 6. T values

      View table
      View in Article

      Table 6. T values

      KRenyi EntropySymmetric Cross EntropyKapur EntropyFCM
      LSSASSALSSASSALSSASSA
      21.421 s1.422 s1.498 s1.498 s1.440 s1.440 s1.667 s
      41.461 s1.453 s1.546 s1.564 s1.496 s1.476 s4.386 s
      61.472 s1.491 s1.618 s1.603 s1.507 s1.489 s8.602 s
      优值个数211102
    • Table 7. Parameter statistical mean of LSSA-MET

      View table
      View in Article

      Table 7. Parameter statistical mean of LSSA-MET

      算 法PSNRSSIMFSIMT/s
      LSSA-Renyi熵1.78×105.08×10-18.54×10-11.451
      LSSA-对称交叉熵1.51×105.02×10-18.44×10-11.554
      LSSA-Kapur熵1.66×105.06×10-18.49×10-11.481
    Tools

    Get Citation

    Copy Citation Text

    Mengfei WANG, Weixing WANG, Limin LI. Automatic segmentation of aggregate images with MET optimized by chaos SSA[J]. Optics and Precision Engineering, 2023, 31(13): 1973

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Aug. 30, 2022

    Accepted: --

    Published Online: Jul. 26, 2023

    The Author Email: Weixing WANG (lilimin@wzu.edu.cn), Limin LI (lilimin@wzu.edu.cn)

    DOI:10.37188/OPE.20233113.1973

    Topics