Laser & Optoelectronics Progress, Volume. 61, Issue 4, 0400001(2024)

Research Progress on Non-Interferometric Label-Free Three-Dimensional Refractive Index Microscopy

Zhan Tong*, Xuesong Ren, Zihan Zhang, Yubin Miao**, and Guoxiang Meng
Author Affiliations
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    References(148)

    [1] Liu P Y, Chin L K, Ser W et al. Cell refractive index for cell biology and disease diagnosis: past, present and future[J]. Lab on a Chip, 16, 634-644(2016).

    [2] Olson E, Levene M J, Torres R. Multiphoton microscopy with clearing for three dimensional histology of kidney biopsies[J]. Biomedical Optics Express, 7, 3089-3096(2016).

    [3] van Royen M E, Verhoef E I, Kweldam C F et al. Three-dimensional microscopic analysis of clinical prostate specimens[J]. Histopathology, 69, 985-992(2016).

    [4] Glaser A K, Reder N P, Chen Y et al. Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens[J]. Nature Biomedical Engineering, 1, 84(2017).

    [5] Nombela-Arrieta C, Manz M G. Quantification and three-dimensional microanatomical organization of the bone marrow[J]. Blood Advances, 1, 407-416(2017).

    [6] Selby M, Delosh R, Laudeman J et al. 3D models of the NCI60 cell lines for screening oncology compounds[J]. SLAS Discovery: Advancing Life Sciences R & D, 22, 473-483(2017).

    [7] Collot M, Ashokkumar P, Anton H et al. MemBright: a family of fluorescent membrane probes for advanced cellular imaging and neuroscience[J]. Cell Chemical Biology, 26, 600-614(2019).

    [8] Ueda H R, Ertürk A, Chung K et al. Tissue clearing and its applications inneuroscience[J]. Nature Reviews Neuroscience, 21, 61-79(2020).

    [9] Kim D, Lee S Y, Lee M, Kim J K, Kim J K, Pack C G et al. Holotomography: refractive index as an intrinsic imaging contrast for 3-D label-free live cell imaging[M]. Advanced imaging and bio techniques for convergence science, 1310, 211-238(2021).

    [10] Andreou C, Weissleder R, Kircher M F. Multiplexed imaging in oncology[J]. Nature Biomedical Engineering, 6, 527-540(2022).

    [11] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [12] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 198, 82-87(2000).

    [13] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [14] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).

    [15] Cox I, Sheppard C, Wilson T. Super-resolution by confocal fluorescent microscopy[J]. Optik, 60, 391-396(1982).

    [16] Nie S M, Chiu D T, Zare R N. Probing individual molecules with confocal fluorescence microscopy[J]. Science, 266, 1018-1021(1994).

    [17] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy[J]. Science, 248, 73-76(1990).

    [18] So P T C, Dong C Y, Masters B R et al. Two-photon excitation fluorescence microscopy[J]. Annual Review of Biomedical Engineering, 2, 399-429(2000).

    [19] König K. Multiphoton microscopy in life sciences[J]. Journal of Microscopy, 200, 83-104(2000).

    [20] Williams R M, Zipfel W R, Webb W W. Multiphoton microscopy in biological research[J]. Current Opinion in Chemical Biology, 5, 603-608(2001).

    [21] Keller P J, Stelzer E H. Quantitative in vivo imaging of entire embryos with digital scanned laser light sheet fluorescence microscopy[J]. Current Opinion in Neurobiology, 18, 624-632(2008).

    [22] Stelzer E H K. Light-sheet fluorescence microscopy for quantitative biology[J]. Nature Methods, 12, 23-26(2015).

    [23] Dong D S, Huang X S, Li L J et al. Super-resolution fluorescence-assisted diffraction computational tomography reveals the three-dimensional landscape of the cellular organelle interactome[J]. Light, Science & Applications, 9, 11(2020).

    [24] Lichtman J W, Conchello J A. Fluorescence microscopy[J]. Nature Methods, 2, 910-919(2005).

    [25] Popescu G[M]. Quantitative phase imaging of cells and tissues(2011).

    [26] Park Y, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine[J]. Nature Photonics, 12, 578-589(2018).

    [27] Zumbusch A, Holtom G R, Xie X S. Three-dimensional vibrational imaging by coherent anti-stokes Raman scattering[J]. Physical Review Letters, 82, 4142-4145(1999).

    [28] Mccreery R L[M]. Raman spectroscopy for chemical analysis(2005).

    [29] Bertolotti J, van Putten E G, Blum C et al. Non-invasive imaging through opaque scattering layers[J]. Nature, 491, 232-234(2012).

    [30] Katz O, Heidmann P, Fink M et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature Photonics, 8, 784-790(2014).

    [31] Demos S G, Alfano R R. Optical polarization imaging[J]. Applied Optics, 36, 150-155(1997).

    [32] Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects[J]. Physica, 9, 686-698(1942).

    [33] Nomarski G. Differential microinterferometer with polarized waves[J]. J. Phys. Radium Paris, 16, 9-11(1955).

    [34] Gabor D. A new microscopic principle[J]. Nature, 161, 777-778(1948).

    [35] Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging[J]. Optics Letters, 24, 291-293(1999).

    [36] Cuche E, Marquet P, Depeursinge C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms[J]. Applied Optics, 38, 6994-7001(1999).

    [37] Teague M R. Irradiance moments: their propagation and use for unique retrieval of phase[J]. Journal of the Optical Society of America, 72, 1199-1209(1982).

    [38] Teague M R. Deterministic phase retrieval: a Green’s function solution[J]. Journal of the Optical Society of America, 73, 1434-1441(1983).

    [39] Streibl N. Phase imaging by the transport equation of intensity[J]. Optics Communications, 49, 6-10(1984).

    [40] Gerchberg R W. Phase determination from image and diffraction plane pictures in the electron microscope[J]. Optik, 34, 275-284(1971).

    [41] Faulkner H M L, Rodenburg J M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm[J]. Physical Review Letters, 93, 023903(2004).

    [42] Faulkner H M L, Rodenburg J M. Error tolerance of an iterative phase retrieval algorithm for moveable illumination microscopy[J]. Ultramicroscopy, 103, 153-164(2005).

    [43] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 7, 739-745(2013).

    [44] Tian L, Li X, Ramchandran K et al. Multiplexed coded illumination for Fourier Ptychography with an LED array microscope[J]. Biomedical Optics Express, 5, 2376-2389(2014).

    [45] Zuo C, Sun J S, Chen Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy[J]. Optics Express, 24, 20724-20744(2016).

    [46] Xu Y Y, Wang Y W, Jin W F et al. New progress on quantitative phase microscopy and phase retrieval for biological cells[J]. Laser & Optoelectronics Progress, 51, 020006(2014).

    [47] Zuo C, Chen Q, Sun J S et al. Non-interferometric phase retrieval and quantitative phase microscopy based on transport of intensity equation: a review[J]. Chinese Journal of Lasers, 43, 0609002(2016).

    [48] Zheng G, Shen C, Jiang S W et al. Concept, implementations and applications of Fourier ptychography[J]. Nature Reviews Physics, 3, 207-223(2021).

    [49] Mu S Q, Dong D S, Shi K B. Label-free optical imaging technology[J]. Laser & Optoelectronics Progress, 59, 1200001(2022).

    [50] Sharpe J, Ahlgren U, Perry P et al. Optical projection tomography as a tool for 3D microscopy and gene expression studies[J]. Science, 296, 541-545(2002).

    [51] Sharpe J. Optical projection tomography[J]. Annual Review of Biomedical Engineering, 6, 209-228(2004).

    [52] Wolf E. Three-dimensional structure determination of semi-transparent objects from holographic data[J]. Optics Communications, 1, 153-156(1969).

    [53] Carter W H. Computational reconstruction of scattering objects from holograms[J]. Journal of the Optical Society of America, 60, 306-314(1970).

    [54] Choi W, Fang-Yen C, Badizadegan K et al. Tomographic phase microscopy[J]. Nature Methods, 4, 717-719(2007).

    [55] Maire G, Drsek F, Girard J et al. Experimental demonstration of quantitative imaging beyond Abbe’s limit with optical diffraction tomography[J]. Physical Review Letters, 102, 213905(2009).

    [56] Sung Y, Choi W, Fang-Yen C et al. Optical diffraction tomography for high resolution live cell imaging[J]. Optics Express, 17, 266-277(2009).

    [57] Habaza M, Gilboa B, Roichman Y et al. Tomographic phase microscopy with 180° rotation of live cells in suspension by holographic optical tweezers[J]. Optics Letters, 40, 1881-1884(2015).

    [58] Kim K, Yoon J, Park Y. Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography[J]. Optica, 2, 343-346(2015).

    [60] Wei W X, He M, Xu J et al. Large field-of-view fast optical diffractive tomographic microscopy[J]. Chinese Journal of Lasers, 50, 0307109(2023).

    [61] Wolf E, Consortini A. Principles and development of diffraction tomography[M]. Trends in optics, 83-110(1996).

    [62] Kozacki T, Kujawińska M, Kniażewski P. Investigation of limitations of optical diffraction tomography[J]. Opto-Electronics Review, 15, 102-109(2007).

    [63] Kim K, Yoon J, Shin S et al. Optical diffraction tomography techniques for the study of cell pathophysiology[J]. Journal of Biomedical Photonics & Engineering, 2, 020201(2016).

    [64] Yang Z W, Zhang L, Lü N et al. Progress of three-dimensional, label-free quantitative imaging of refractive index in biological samples[J]. Chinese Journal of Lasers, 49, 0507201(2022).

    [65] Devaney A J. A filtered backpropagation algorithm for diffraction tomography[J]. Ultrasonic Imaging, 4, 336-350(1982).

    [66] Vouldis A T, Kechribaris C N, Maniatis T A et al. Three-dimensional diffraction tomography using filtered backpropagation and multiple illumination planes[J]. IEEE Transactions on Instrumentation and Measurement, 55, 1975-1984(2006).

    [67] Kim K, Lee S, Yoon J et al. Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes[J]. Scientific Reports, 6, 36815(2016).

    [68] Simon B, Debailleul M, Houkal M et al. Tomographic diffractive microscopy with isotropic resolution[J]. Optica, 4, 460-463(2017).

    [69] Born M, Wolf E[M]. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light(2013).

    [70] Li J J, Chen Q, Sun J S et al. Three-dimensional tomographic microscopy technique with multi-frequency combination with partially coherent illuminations[J]. Biomedical Optics Express, 9, 2526-2542(2018).

    [71] Maurer C, Jesacher A, Bernet S et al. What spatial light modulators can do for optical microscopy[J]. Laser & Photonics Reviews, 5, 81-101(2011).

    [72] Li J J, Chen Q, Zhang J L et al. Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array[J]. Optics and Lasers in Engineering, 95, 26-34(2017).

    [73] Ling R L, Tahir W, Lin H Y et al. High-throughput intensity diffraction tomography with a computational microscope[J]. Biomedical Optics Express, 9, 2130-2141(2018).

    [74] Li J J, Matlock A C, Li Y Z et al. High-speed in vitro intensity diffraction tomography[J]. Advanced Photonics, 1, 066004(2019).

    [75] Li J J, Matlock A, Li Y Z et al. Resolution-enhanced intensity diffraction tomography in high numerical aperture label-free microscopy[J]. Photonics Research, 8, 1818-1826(2020).

    [76] Matlock A, Tian L. High-throughput, volumetric quantitative phase imaging with multiplexed intensity diffraction tomography[J]. Biomedical Optics Express, 10, 6432-6448(2019).

    [77] Zuo C, Sun J S, Li J J et al. Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography[J]. Optics and Lasers in Engineering, 128, 106003(2020).

    [78] Chowdhury S, Chen M, Eckert R et al. High-resolution 3D refractive index microscopy of multiple-scattering samples from intensity images[J]. Optica, 6, 1211-1219(2019).

    [79] Baek Y, Park Y. Intensity-based holographic imaging via space-domain Kramers-Kronig relations[J]. Nature Photonics, 15, 354-360(2021).

    [80] Hugonnet H, Kim Y W, Lee M et al. Multiscale label-free volumetric holographic histopathology of thick-tissue slides with subcellular resolution[J]. Advanced Photonics, 3, 026004(2021).

    [81] Chen M, Tian L, Waller L. 3D differential phase contrast microscopy[J]. Biomedical Optics Express, 7, 3940-3950(2016).

    [82] Fahrbach F O, Voigt F F, Schmid B et al. Rapid 3D light-sheet microscopy with a tunable lens[J]. Optics Express, 21, 21010-21026(2013).

    [83] Rodrigo J A, Soto J M, Alieva T. Fast label-free microscopy technique for 3D dynamic quantitative imaging of living cells[J]. Biomedical Optics Express, 8, 5507-5517(2017).

    [84] Soto J M, Rodrigo J A, Alieva T. Label-free quantitative 3D tomographic imaging for partially coherent light microscopy[J]. Optics Express, 25, 15699-15712(2017).

    [85] Lazarev G, Hermerschmidt A, Krüger S et al[M]. LCOS spatial light modulators: trends and applications(2012).

    [86] Qu J Q, Zou L M, Chen Y J et al. Realization of non-mechanical lateral and axial confocal microscopic laser scanning with a phase only liquid crystal spatial light modulator[J]. Key Engineering Materials, 613, 167-172(2014).

    [87] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 21, 2758-2769(1982).

    [88] Klibanov M V, Sacks P E, Tikhonravov A V. The phase retrieval problem[J]. Inverse Problems, 11, 1-28(1995).

    [89] Shechtman Y, Eldar Y C, Cohen O et al. Phase retrieval with application to optical imaging: a contemporary overview[J]. IEEE Signal Processing Magazine, 32, 87-109(2015).

    [90] Ikezaki A, Nomura T. Phase-unwrapping-free and iterative reconstruction methods for propagated refractive index tomography[J]. Japanese Journal of Applied Physics, 57, 09SB03(2018).

    [91] de L Kronig R. On the theory of dispersion of X-rays[J]. Journal of the Optical Society of America, 12, 547-557(1926).

    [92] Li J J, Zhou N, Sun J S et al. Transport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopy[J]. Light: Science & Applications, 11, 154(2022).

    [93] Fannjiang A. Absolute uniqueness of phase retrieval with random illumination[J]. Inverse Problems, 28, 075008(2012).

    [94] Grohs P, Koppensteiner S, Rathmair M. Phase retrieval: uniqueness and stability[J]. SIAM Review, 62, 301-350(2020).

    [95] Diaz R E, Alexopoulos N G. An analytic continuation method for the analysis and design of dispersive materials[J]. IEEE Transactions on Antennas and Propagation, 45, 1602-1610(1997).

    [96] Ullah H, Li J J, Zhou S et al. Parallel synthetic aperture transport-of-intensity diffraction tomography with annular illumination[J]. Optics Letters, 48, 1638-1641(2023).

    [97] Zheng G[M]. Fourier ptychographic imaging a MATLAB tutorial(2016).

    [98] Horstmeyer R, Chung J, Ou X Z et al. Diffraction tomography with Fourier ptychography[J]. Optica, 3, 827-835(2016).

    [99] Zhou S, Li J J, Sun J S et al. Accelerated Fourier ptychographic diffraction tomography with sparse annular LED illuminations[J]. Journal of Biophotonics, 15, e202100272(2022).

    [100] Zhou S, Li J J, Sun J et al. Transport-of-intensity Fourier ptychographic diffraction tomography: defying the matched illumination condition[J]. Optica, 9, 1362-1373(2022).

    [101] Soto J M, Rodrigo J A, Alieva T. Optical diffraction tomography with fully and partially coherent illumination in high numerical aperture label-free microscopy[J]. Applied Optics, 57, A205-A214(2018).

    [102] Streibl N. Three-dimensional imaging by a microscope[J]. Journal of the Optical Society of America A, 2, 121-127(1985).

    [103] Bao Y J, Gaylord T K. Quantitative phase imaging method based on an analytical nonparaxial partially coherent phase optical transfer function[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 33, 2125-2136(2016).

    [104] Bai Z D, Chen Q, Ullah H et al. Absorption and phase decoupling in transport of intensity diffraction tomography[J]. Optics and Lasers in Engineering, 156, 107082(2022).

    [105] Jenkins M H, Gaylord T K. Three-dimensional quantitative phase imaging via tomographic deconvolution phase microscopy[J]. Applied Optics, 54, 9213-9227(2015).

    [106] Bao Y J, Gaylord T K. Iterative optimization in tomographic deconvolution phase microscopy[J]. Journal of the Optical Society of America A, 35, 652-660(2018).

    [107] Long J M, Chun J Y, Gaylord T K. ADMM approach for efficient iterative tomographic deconvolution reconstruction of 3D quantitative phase images[J]. Applied Optics, 60, 8485-8492(2021).

    [108] Soto J M, Rodrigo J A, Alieva T. Partially coherent illumination engineering for enhanced refractive index tomography[J]. Optics Letters, 43, 4699-4702(2018).

    [109] Hugonnet H, Lee M, Park Y. Optimizing illumination in three-dimensional deconvolution microscopy for accurate refractive index tomography[J]. Optics Express, 29, 6293-6301(2021).

    [110] Li J J, Zhou N, Bai Z D et al. Optimization analysis of partially coherent illumination for refractive index tomographic microscopy[J]. Optics and Lasers in Engineering, 143, 106624(2021).

    [111] Xiong B, Li X X, Zhou Y et al. Snapshot partially coherent diffraction tomography[J]. Physical Review Applied, 15, 044048(2021).

    [112] Huang J H, Bao Y J, Gaylord T K. Analytical phase optical transfer function for Gaussian illumination and the optimized illumination profiles[J]. Journal of the Optical Society of America A, 38, 750-764(2021).

    [113] Zhang Y B, Cui Z, Ji X Y et al. 3D Fourier ptychographic microscopy based on the beam propagation method and time-reversal scheme[J]. IEEE Access, 7, 129402-129410(2019).

    [114] Chen M, Ren D, Liu H Y et al. Multi-layer Born multiple-scattering model for 3D phase microscopy[J]. Optica, 7, 394-403(2020).

    [115] Hu J, Li S Z, Xie H et al. Multi-slice ptychographic imaging with multistage coarse-to-fine reconstruction[J]. Optics Express, 30, 21211-21229(2022).

    [116] Sun M L, Shao L N, Zhang J R et al. High-resolution 3D Fourier ptychographic reconstruction using a hemispherical illumination source with multiplexed-coded strategy[J]. Biomedical Optics Express, 13, 2050-2067(2022).

    [117] Zhu J B, Wang H, Tian L et al. High-fidelity intensity diffraction tomography with a non-paraxial multiple-scattering model[J]. Optics Express, 30, 32808-32821(2022).

    [118] Mu S Q, Shi Y T, Song Y T et al. Multislice computational model for birefringent scattering[J]. Optica, 10, 81-89(2023).

    [119] Kamilov U S, Papadopoulos I N, Shoreh M H et al. Optical tomographic image reconstruction based on beam propagation and sparse regularization[J]. IEEE Transactions on Computational Imaging, 2, 59-70(2016).

    [120] Lim J, Ayoub A B, Antoine E E et al. High-fidelity optical diffraction tomography of multiple scattering samples[J]. Light: Science & Applications, 8, 82(2019).

    [121] Yeh L H, Dong J, Zhong J S et al. Experimental robustness of Fourier ptychography phase retrieval algorithms[J]. Optics Express, 23, 33214-33240(2015).

    [122] Sinha A, Lee J, Li S et al. Lensless computational imaging through deep learning[J]. Optica, 4, 1117-1125(2017).

    [123] Lin X, Rivenson Y, Yardimci N T et al. All-optical machine learning using diffractive deep neural networks[J]. Science, 361, 1004-1008(2018).

    [124] Rivenson Y, Zhang Y B, Günaydın H et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light: Science & Applications, 7, 17141(2018).

    [125] Barbastathis G, Ozcan A, Situ G H. On the use of deep learning for computational imaging[J]. Optica, 6, 921-943(2019).

    [126] Tong Z, Ye Q, Xiao D F et al. Quantitative pure-phase object reconstruction under single-shot Fourier measurement via deep learning[J]. Optics and Lasers in Engineering, 143, 106619(2021).

    [127] Saba A, Gigli C, Ayoub A B et al. Physics-informed neural networks for diffraction tomography[J]. Advanced Photonics, 4, 066001(2022).

    [128] Kamilov U S, Papadopoulos I N, Shoreh M H et al. Learning approach to optical tomography[J]. Optica, 2, 517-522(2015).

    [129] Pierré W, Hervé L, Paviolo C et al. 3D time-lapse imaging of a mouse embryo using intensity diffraction tomography embedded inside a deep learning framework[J]. Applied Optics, 61, 3337-3348(2022).

    [130] Zhou K C, Horstmeyer R. Diffraction tomography with a deep image prior[J]. Optics Express, 28, 12872-12896(2020).

    [131] Liu R H, Sun Y, Zhu J B et al. Recovery of continuous 3D refractive index maps from discrete intensity-only measurements using neural fields[J]. Nature Machine Intelligence, 4, 781-791(2022).

    [132] Sun Y, Xia Z H, Kamilov U S. Efficient and accurate inversion of multiple scattering with deep learning[J]. Optics Express, 26, 14678-14688(2018).

    [133] Lim J, Ayoub A B, Psaltis D. Three-dimensional tomography of red blood cells using deep learning[J]. Advanced Photonics, 2, 026001(2020).

    [134] Matlock A, Zhu J B, Tian L. Multiple-scattering simulator-trained neural network for intensity diffraction tomography[J]. Optics Express, 31, 4094-4107(2023).

    [135] Bian L H, Li D Y, Chang X Y et al. Theory and approach of large-scale computational reconstruction[J]. Laser & Optoelectronics Progress, 60, 0200001(2023).

    [136] Lee M, Lee Y H, Song J et al. Deep-learning-based three-dimensional label-free tracking and analysis of immunological synapses of CAR-T cells[J]. eLife, 9, e49023(2020).

    [137] Juyeon P, Bai B J, DongHun R et al. Artificial intelligence-enabled quantitative phase imaging methods for life sciences[J]. Nature Methods, 20, 1645-1660(2023).

    [138] Pavillon N, Hobro A J, Akira S et al. Noninvasive detection of macrophage activation with single-cell resolution through machine learning[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, E2676-E2685(2018).

    [139] Ryu D, Kim K, Cho H et al. Label-free 3-D quantitative phase imaging cytometry with deep learning: identifying naive, memory, and senescent T cells[J]. The Journal of Immunology, 204, 85-86(2020).

    [140] Zhu X P, Huang L M, Zheng Y et al. Ultrafast optical clearing method for three-dimensional imaging with cellular resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 11480-11489(2019).

    [141] Oliveira L M C, Tuchin V V, The optical clearing method. Optical clearing and tissue imaging[M]. SpringerBriefs in physics, 107-138(2019).

    [142] Chowdhury S, Eldridge W J, Wax A et al. Structured illumination multimodal 3D-resolved quantitative phase and fluorescence sub-diffraction microscopy[J]. Biomedical Optics Express, 8, 2496-2518(2017).

    [143] Paidi S K, Shah V, Raj P et al. Coarse Raman and optical diffraction tomographic imaging enable label-free phenotyping of isogenic breast cancer cells of varying metastatic potential[J]. Biosensors and Bioelectronics, 175, 112863(2021).

    [144] Anantha P, Liu Z H, Raj P et al. Optical diffraction tomography and Raman spectroscopy reveal distinct cellular phenotypes during white and brown adipocyte differentiation[J]. Biosensors and Bioelectronics, 235, 115388(2023).

    [145] Zhao J, Matlock A, Zhu H B et al. Bond-selective intensity diffraction tomography[J]. Nature Communications, 13, 7767(2022).

    [146] Heuke S, Rigneault H, Sentenac A. 3D-coherent anti-Stokes Raman scattering Fourier ptychography tomography (CARS-FPT)[J]. Optics Express, 29, 4230-4239(2021).

    [147] Song S, Kim J, Moon T et al. Polarization-sensitive intensity diffraction tomography[J]. Light: Science & Applications, 12, 124(2023).

    [148] Lee K, Lim J, Park Y et al. Full-field quantitative X-ray phase nanotomography via space-domain Kramers-Kronig relations[J]. Optica, 10, 407-414(2023).

    Tools

    Get Citation

    Copy Citation Text

    Zhan Tong, Xuesong Ren, Zihan Zhang, Yubin Miao, Guoxiang Meng. Research Progress on Non-Interferometric Label-Free Three-Dimensional Refractive Index Microscopy[J]. Laser & Optoelectronics Progress, 2024, 61(4): 0400001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Nov. 6, 2023

    Accepted: Nov. 27, 2023

    Published Online: Feb. 27, 2024

    The Author Email: Tong Zhan (agony_cxy@sjtu.edu.cn), Miao Yubin (ybmiao@sjtu.edu.cn)

    DOI:10.3788/LOP232435

    Topics