Infrared and Laser Engineering, Volume. 53, Issue 12, 20240286(2024)

Embedding spatial position information and Multi-view Feature Extraction for infrared small target detection

Zifen HE, Jinsheng XUE, Yinhui ZHANG*, and Guangchen CHEN
Author Affiliations
  • Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
  • show less
    References(23)

    [1] [1] CUI Yunlong, XUE Yuli, YUAN Suzhen, et al. Infrared small target detection algithm based on local mean [J]. Infrared Laser Engineering , 2013, 42(3): 814822. (in Chinese)

    [2] Yan HONG, Danping ZHU, Pingshun GONG. Retinex mine image enhancement algorithm based on TopHat weighted guided filtering. Industrial Automation and Mine, 48, 43-49(2022).

    [6] Xingyu HUO, Ying CHEN. Image restoration technology based on R-CNN. Journal of Changchun University of Science and Technology (Natural Science Edition), 46, 107-113(2023).

    [7] Jie ZHANG. Small object detection based on improved faster-RCNN. Modern Computer, 29, 14-18(2023).

    [8] [8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, realtime object detection[C]2016 IEEE Conference on Computer Vision Pattern Recognition (CVPR), IEEE, 2016: 779788.

    [9] [9] YE K, FANG Z, HUANG X, et al. Research on small target detection algithm based on improved YOLOv3[C]2020 5th International Conference on Mechanical, Control Computer Engneering (ICMCCE), IEEE, 2020: 14671470.

    [11] [11] QIAO S, CHEN C, YUILLE A. DetectRS: detecting objects with recursive feature pyra switchable atrous convolution[C]2021 IEEECVF Conference on Computer Vision Pattern Recognition (CVPR), IEEE, 2021: 1020810219.

    [12] J ZHOU, T SU, K LI et al. Small target YOLOvSmall target YOLOv5: enhancing the algorithm for small object detection in drone aerial imagery based on YOLOv5. Sensors, 24, 134(2024).

    [14] [14] LIU Haojiao, LIU Lishuang, ZHANG Mingchun. Improved infrared target detection algithm based on YOLOv5 [J]. Laser Technology , 2024, 48(4): 113. (in Chinese)

    [15] [15] LIN TY, DOLLAR P, GIRSHICK R, et al. Feature pyra wks f object detection[C]2016 IEEE Conference on Computer Vision Pattern Recognition (CVPR),IEEE, 2017: 936944.

    [16] [16] LIU S, QI L, QIN H, et al. Path aggregation wk f instance segmentation[C]2018 IEEECVF Conference on Computer Vision Pattern Recognition,IEEE, 2018: 87598768.

    [17] [17] HOU Q, ZHOU D, FENG J. Codinate attention f efficient mobile wk design[C]2021 IEEECVF Conference on Computer Vision Pattern Recognition (CVPR), IEEE, 2021: 1370813717.

    [18] [18] QI Y, HE Y, QI X, et al. Dynamic snake convolution based on topological geometric constraints f tubular structure segmentation[C]2023 IEEECVF International Conference on Computer Vision (ICCV), IEEE, 2023: 60476056.

    [19] [19] LI Y, HOU Q, ZHENG Z, et al. Large ive Kernel wk f remote sensing object detection[C]2023 IEEECVF International Conference on Computer Vision (ICCV), 2023: 1674816759.

    [20] [20] ZHAO Y, LV W, XU S, et al. DETRs beat YOLOs on realtime object detection[C]Proceedings of the IEEECVF Conference on Computer Vision Pattern Recognition, 2024: 1696516974.

    [21] [21] KUMAR N, UPADHYAY A, SHARMA S, et al. MWIRSTD: A MWIR small target detection dataset [C]2024 IEEE International Conference on Image Processing, 2024: 179185.

    [22] [22] DAI Y, WU Y, ZHOU F, et al. Asymmetric contextual modulation f infrared small target detection [C]2021 IEEE Winter Conference on Applications of Computer Vision (WACV), 2020: 949958.

    Tools

    Get Citation

    Copy Citation Text

    Zifen HE, Jinsheng XUE, Yinhui ZHANG, Guangchen CHEN. Embedding spatial position information and Multi-view Feature Extraction for infrared small target detection[J]. Infrared and Laser Engineering, 2024, 53(12): 20240286

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: 图像处理

    Received: Sep. 22, 2024

    Accepted: --

    Published Online: Jan. 16, 2025

    The Author Email:

    DOI:10.3788/IRLA20240286

    Topics