Infrared and Laser Engineering, Volume. 52, Issue 2, 20220318(2023)

Review of Time-of-Flight imaging through scattering media technology

Xia Wang*, Yixin Zhang, Yuwei Zhao, and Weiqi Jin
Author Affiliations
  • Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    References(65)

    [1] Jang W, Je C, Seo Y, et al. Structured-light stereo: Comparative analysis and integration of structured-light and active stereo for measuring dynamic shape[J]. Optics & Lasers in Engineering, 51, 1255-1264(2013).

    [2] Xiong H, Zong Z, Chen C. Approach for accurately extracting the full resolution centers of structured light stripe[J]. Optics and Precision Engineering, 17, 1057-1062(2009).

    [3] [3] Ridan A O, Newe T, Toal D, et al. Stereo vision sensing: Review of existing systems[C]International Conference on Sensing Technology, 2018: 178184.

    [4] Sun J, Wu Z, Liu Q, et al. Field calibration of stereo vision sensor with large FOV[J]. Optics and Precision Engineering, 17, 633-640(2009).

    [5] Wang Q H, Wang S, Li B, et al. In-situ 3D reconstruction of worn surface topography via optimized photometric stereo[J]. Measurement, 190, 110679(2022).

    [6] Bu Y, Du X, Zeng Z, et al. Research progress and trend analysis of non-scanning laser 3D imaging radar[J]. Chinese Optics, 11, 711-727(2018).

    [7] Wang F, Tang W, Wang T, et al. Design of 3D laser imaging receiver based on 8×8 APD detector array[J]. Chinese Optics, 8, 422-427(2015).

    [8] Lange R, Seitz P. Solid-state time-of-flight range camera[J]. IEEE Journal of Quantum Electronics, 37, 390-397(2001).

    [9] [9] Mufti F, Mahony R. Statistical analysis of measurement processes f timeofflight cameras[C]Proceedings of SPIE, 2009, 7447: 720–731.

    [10] Langmann B, Hartmann K, Loffeld O. Increasing the accuracy of Time-of-Flight cameras for machine vision applications[J]. Computers in Industry, 64, 1090-1098(2013).

    [11] Kadambi A, Raskar R. Rethinking machine vision time of flight with GHz heterodyning[J]. IEEE Access, 5, 26211-26223(2017).

    [12] Molina J, Escudero-Viñolo M, Signoriello A, et al. Real-time user independent hand gesture recognition from time-of-flight camera video using static and dynamic models[J]. Machine Vision & Applications, 24, 187-204(2013).

    [13] [13] Behrje U, Himstedt M, Maehle E. An autonomous fklift with 3D timeofflight camerabased localization navigation[C]2018 15th International Conference on Control, Automation, Robotics Vision (ICARCV), 2018: 17391746.

    [14] Niskanen I, Immonen M, Hallman L, et al. Time-of-flight sensor for getting shape model of automobiles toward digital 3D imaging approach of autonomous driving-ScienceDirect[J]. Automation in Construction, 121, 103429(2021).

    [15] Lu Chunqing, Yang Mengfei, Wu Yanpeng, et al. Research on pose measurement and ground object recognition technology based on C-TOF imaging[J]. Infrared and Laser Engineering, 49, 0113005(2020).

    [16] Bhandari A, Raskar R. Signal processing for time-of-flight imaging sensors: An introduction to inverse problems in computational 3-D imaging[J]. IEEE Signal Processing Magazine, 33, 45-58(2016).

    [17] [17] Lin J, Liu Y, Hullin M B, et al. Fourier analysis on transient imaging with a multifrequency timeofflight camera[C] 2014 IEEE Conference on Computer Vision Pattern Recognition, IEEE, 2014: 32303237.

    [18] [18] Godbaz J P, Cree M J, Drington A A. Mixed pixel return separation f a fullfield ranger[C]Image & Vision Computing New Zeal, Ivcnz International Conference, IEEE, 2009: 16.

    [19] [19] Drington A A, Godbaz J P, Cree M J, et al. Separating true range measurements from multipath scattering interference in commercial range cameras[C]Proceedings of SPIE, 2011, 7864: 110.

    [20] Patil S S, Bhade P M, Inamdar V S. Depth recovery in time of flight range sensors via compressed sensing algorithm[J]. International Journal of Intelligent Robotics and Applications, 4, 243-251(2020).

    [21] [21] Freedman D, Krupka E, Smolin Y, et al. SRA: Fast removal of general multipath f ToF senss[C] European Conference on Computer Vision(ECCV 2014), 2014, 8689: 234249.

    [22] Jiang B, Jin X, Peng Y, et al. Design of multipath error correction algorithm of coarse and fine sparse decomposition based on compressed sensing in time-of-flight cameras[J]. The Imaging Science Journal, 67, 464-474(2020).

    [23] [23] Bhari A, Feigin M, Izadi S, et al. Resolving multipath interference in Kinect: An inverse problem approach[C]Valencia, Spain Senss, IEEE, November 25, 2014: 614617.

    [24] [24] Kirmani A, Benedetti A, Chou P A. SPUMIC: Simultaneous phase unwrapping multipath interference cancellation in timeofflight cameras using spectral methods[C]Multimedia Expo (ICME), 2013 IEEE International Conference , 2013: 16.

    [25] Whyte R, Streeter L, Cree M J, et al. Resolving multiple propagation paths in time of flight range cameras using direct and global separation methods[J]. Optical Engineering, 54, 1131109(2015).

    [26] Marco J, Hernandez Q, Muoz A, et al. DeepToF: Off-the-shelf real-time correction of multipath interference in time-of-flight imaging[J]. ACM Transactions on Graphics, 36, 1-12(2018).

    [27] [27] Su S, Heide F, Wetzstein G, et al. Deep endtoend timeofflight imaging[C]2018 IEEECVF Conference on Computer Vision Pattern Recognition (CVPR), 2018: 63836392.

    [28] [28] Agresti G, Schaefer H, Sart P, et al. Unsupervised domain adaptation f tof data denoising with adversarial learning[C]2019 IEEECVF Conference on Computer Vision Pattern Recognition (CVPR), 2020: 55795586.

    [29] Nitzan D, Brain A E, Duda R O. The measurement and use of registered reflectance and range data in scene analysis[J]. Proceedings of the IEEE, 65, 206-220(1977).

    [30] Spirig T, Seitz P, Vietze O, et al. The lock-in CCD-two-dimensional synchronous detection of light[J]. IEEE Journal of Quantum Electronics, 31, 1705-1708(1995).

    [31] [31] Lange R, Seitz P, Biber A, et al. Timeofflight range imaging with a custom solid state image sens[C]Proceedings of SPIE, 1999, 3823: 180191.

    [32] [32] Zanuttigh P, Marin G, Mutto C D, et al. Timeofflight structured light depth cameras: Technology applications[M]. Switzerl: Springer International Publishing, 2016: 27113.

    [33] Lu Chunqing, Song Yuzhi, Wu Yanpeng, et al. Theoretical investigation on correlating time-of-flight 3 D sensation error[J]. Infrared and Laser Engineering, 48, 1113002(2019).

    [34] Bronzi D, Zou Y, Villa F, et al. Automotive three-dimensional vision through a single-photon counting SPAD camera[J]. IEEE Transactions on Intelligent Transportation Systems, 17, 782-795(2016).

    [35] [35] Laurenzis M, Christnacher F, Bacher E, et al. New approaches of threedimensional rangegated imaging in scattering environments[C] Proceedings of SPIE, 2011, 8186(1): 818603.

    [36] Illig D W, Jemison W D, Mullen L J. Independent component analysis for enhancement of an FMCW optical ranging technique in turbid waters[J]. Applied Optics, 55, C25-C33(2016).

    [37] Kijima D, Kushida T, Kitajima H, et al. Time-of-flight imaging in fog using multiple time-gated exposures[J]. Optics Express, 29, 6453-6467(2021).

    [38] Henyey L G, Greenstein J L. Diffuse radiation in the Galaxy[J]. Astrophysical Journal, 93, 70-83(1941).

    [39] Yin X, Cheng H, Yang K, et al. Bayesian reconstruction method for underwater 3D range-gated imaging enhancement[J]. Applied Optics, 59, 370-379(2020).

    [40] Consani C, Druml N, Dielacher M, et al. Fog effects on time-of-flight imaging investigated by ray-tracing simulations[J]. MPDI, 2, 859(2018).

    [41] Gupta M, Nayar S K, Hullin M B, et al. Phasor imaging: A generalization of correlation-based time-of-flight imaging[J]. ACM Transactions on Graphics, 34, 1-18(2015).

    [42] Muraji T, Tanaka K, Funatomi T, et al. Depth from phasor distortions in fog[J]. Optics Express, 27, 18858-18868(2019).

    [43] [43] Fujimura Y, Sonogashira M, Iiyama M. Defogging kinect: Simultaneous estimation of object region depth in foggy scenes[EBOL]. (20190401)[20220509]. https:arxiv.gabs1904.00558.

    [44] Fujimura Y, Sonogashira M, Iiyama M. Simultaneous estimation of object region and depth in participating media using a ToF camera[J]. IEICE Transactions on Information and Systems, 103-D, 660-673(2020).

    [45] Zhang Y, Wang X, Zhao Y, et al. Time-of-flight imaging in fog using polarization phasor imaging[J]. Sensors, 22, 3159(2022).

    [46] Lu H, Zhang Y, Li Y, et al. Depth map reconstruction for underwater kinect camera using inpainting and local image mode filtering[J]. IEEE Access, 5, 7115-7122(2017).

    [47] Heide F, Hullin M B, Gregson J, et al. Low-budget transient imaging using photonic mixer devices[J]. ACM Transactions on Graphics, 32, 45(2013).

    [48] [48] Smith A M, Skupski J, Davis J. Transient rendering[R]. Santa Cruz, CA: School of Engineering, University of Califnia, Santa Cruz, 2008.

    [49] [49] Lin J, Liu Y, Hullin M B, et al. Fourier analysis on transient imaging with a multifrequency timeofflight camera[C]2014 IEEE Conference on Computer Vision Pattern Recognition, June, 2328, 2014, Columbus, OH, USA, 2014: 32303237.

    [50] Qiao H, Lin J, Liu Y, et al. Resolving transient time profile in ToF imaging via log-sum sparse regularization[J]. Optics Letters, 40, 918-921(2015).

    [51] Heide F, Xiao L, Kolb A, et al. Imaging in scattering media using correlation image sensors and sparse convolutional coding[J]. Optics Express, 22, 26338-26350(2014).

    [52] Wu R H, Suo J N, Dai F, et al. Scattering robust 3D reconstruction via polarized transient imaging[J]. Optics Letters, 41, 3948-3951(2016).

    [53] Wu R H, Adrian J, Suo J N, et al. Adaptive polarization-difference transient imaging for depth estimation in scattering media[J]. Optics Letters, 43, 1299-1302(2018).

    [54] Wu R H, Dai F, Yin D, et al. Imaging through scattering media based on transient imaging technique[J]. Chinese Journal of Computers, 41, 2421-2435(2018).

    [55] Klose R, Penlington J, Ruckelshausen A. Usability of 3D time-of-flight cameras for automatic plant phenotyping[J]. Image Anal Agric Prod Process, 69, 93-105(2011).

    [56] Kazmi W, Foix S, Alenya G, et al. Indoor and outdoor depth imaging of leaves with time-of-flight and stereo vision sensors: Analysis and comparison[J]. ISPRS Journal of Photo-grammetry & Remote Sensing, 88, 128-146(2014).

    [57] Dionisio A, José D, César F Q, et al. An approach to the use of depth cameras for weed volume estimation[J]. Sensors, 16, 972(2016).

    [58] Vazquez-Arellano M, Reiser D, Paraforos D S, et al. 3-D reconstruction of maize plants using a time-of-flight camera[J]. Comput Electron Agr, 145, 235-247(2018).

    [59] [59] Tsui C L, Schipf D, Lin K R, et al. Using a time of flight method f underwater 3dimensional depth measurements point cloud imaging[C]OCEANS 2014 TAIPEI, IEEE, 2014.

    [60] Anwer A, Azhar A S S, Khan A, et al. Underwater 3-D scene reconstruction using kinect v2 based on physical models for refraction and time of flight correction[J]. IEEE Access, 5, 15960-15970(2017).

    [61] [61] Digumarti S T, Chaurasia G, Taneja A, et al. Underwater 3D capture using a lowcost commercial depth camera[C]2016 IEEE Winter Conference on Applications of Computer Vision (WACV), 0710 March 2016.

    [62] Jian L, Ju H J, Zhang W F, et al. Review of optical polarimetric dehazing technique[J]. Acta Optica Sinica, 37, 0400001(2017).

    [63] He K M, Sun J, Tang X O, et al. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 2341-2353(2011).

    [64] Han J, Yang K, Xia M, et al. Resolution enhancement in active underwater polarization imaging with modulation transfer function analysis[J]. Applied Optics, 54, 3294-3302(2015).

    [65] Xiao J, Stolkin R, Gao Y, et al. Robust fusion of color and depth data for RGB-D target tracking using adaptive range-invariant depth models and spatio-temporal consistency constraints[J]. IEEE Transactions on Cybernetics, 48, 2485-2499(2018).

    Tools

    Get Citation

    Copy Citation Text

    Xia Wang, Yixin Zhang, Yuwei Zhao, Weiqi Jin. Review of Time-of-Flight imaging through scattering media technology[J]. Infrared and Laser Engineering, 2023, 52(2): 20220318

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical imaging

    Received: May. 9, 2022

    Accepted: --

    Published Online: Mar. 13, 2023

    The Author Email: Xia Wang (angelniuniu@bit.edu.cn)

    DOI:10.3788/IRLA20220318

    Topics