Electro-Optic Technology Application, Volume. 37, Issue 4, 47(2022)
Optimization of Output Coupling Mirror Transmittance for All-solid-state Single-frequency Lasers (Invited)
[1] [1] BRILLET, BRINKMANN A, BRISSION M, et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6): 061102.
[2] [2] KWEE P, BOGAN C, DANZMANN K, et al. Stabilized high-power laser system for the gravitational wave detector advanced LIGO[J]. Optics Express, 2012, 20(10): 10617-10634.
[3] [3] THIES F, BODE N, OPPERMANN P, et al. Nd:YVO4 high-power master oscillator power amplifier laser system for second-generation gravitational wave detector[J]. Optics Letters, 2019, 44(3): 719-722.
[4] [4] BASU C, WE?ELS P, NEUMANN J, et al. High power single frequency solid state master oscillator power amplifier for gravitational wave detection[J]. Chinese Optics Letters, 2012, 37(14): 2862-2864.
[5] [5] KIMBLE H J. The quantum internet[J]. Nature, 2008, 453(7198): 1023-1030.
[6] [6] NABORS C D, FARINAS A D, DAY T, et al. Experimental preparation of eight-partite cluster state for photonic qumodes[J]. Chinese Optics Letters, 2012, 37(24): 5178-5180.
[7] [7] GUO Y R, LU H D, XU M Z, et al. Investigation about the influence of longitudinal-mode structure of the laser on the relative intensity noise properties[J]. Optics Express, 2018, 26(16): 21108-21118.
[8] [8] WANG Y J, ZHENG Y H, SHI Z, et al. High-power single-frequency Nd:YVO4 green laser by self-compensation of astigmatisms[J]. Laser Physics Letters, 2012, 9(7): 506-510.
[9] [9] GUO Y R, XU M Z, PENG W N, et al. Realization of a 101 W single-frequency continuous wave all-solid-state 1 064 nm laser by means of mode self-reproduction[J]. Optics Letters, 2018, 43(24): 6017-6020.
[10] [10] LU H D, SU J, ZHENG Y H, et al. Physical conditions of single-longitudinal-mode operation for high-power all-solid-state lasers[J]. Optics Letters, 2014, 39(5): 1117-1120.
[11] [11] Délen X, BALEMBOIS F, GEORGES P. Design of a high gain single stage and single pass Nd:YVO4 passive picosecond amplifier[J]. Journal of the Optical Society B, 2012, 29(9): 2339-2346.
[12] [12] GUO Y R, LU H D, SU J, et al. Intra-cavity round-trip loss measurement of all-solid-state single-frequency laser by introducing extra nonlinear loss[J]. Chinese Optics Letters, 2017, 15(2): 021402.
[13] [13] ZHANG C W, LU H D, YIN Q W, et al. Continuous-wave single-frequency laser with dual wavelength at 1064 and 532 nm[J]. Applied Optics, 2014, 53(28): 6371-6437.
[14] [14] CHEN Y F. Pump-to-mode size ratio dependence of thermal loading in diode-end-pumped solid-state lasers[J]. Journal of the Optical Society B, 2000, 17(11): 1835-1840.
Get Citation
Copy Citation Text
GUO Yongrui, SHENG Hongyuan, ZHANG Nana, CHEN Shanshan, LU Huadong. Optimization of Output Coupling Mirror Transmittance for All-solid-state Single-frequency Lasers (Invited)[J]. Electro-Optic Technology Application, 2022, 37(4): 47
Category:
Received: May. 19, 2022
Accepted: --
Published Online: Dec. 14, 2022
The Author Email:
CSTR:32186.14.