Opto-Electronic Engineering, Volume. 51, Issue 10, 240191(2024)

Research progress and development trend of electromagnetic cloaking

Ran Sun... Fei Sun* and Yichao Liu |Show fewer author(s)
Author Affiliations
  • School of Electronic Information and Optical Engineering,Key Laboratory of Advanced Sensors and Intelligent Control,Taiyuan University of Technology,Ministry of Education and Shanxi Province,Taiyuan,Shanxi 030024,China
  • show less
    References(263)

    [1] J B Pendry, D Schurig, D R Smith. Controlling electromagnetic fields. Science, 312, 1780-1782(2006).

    [2] H Y Chen, C T Chan, P Sheng. Transformation optics and metamaterials. Nat Mater, 9, 387-396(2010).

    [3] L Xu, H Y Chen. Transformation metamaterials. Adv Mater, 33, 2005489(2021).

    [4] J Luo, P Xu, H Y Chen et al. Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials. Appl Phys Lett, 100, 221903(2012).

    [5] M B Pu, X L Ma, X Li et al. Merging plasmonics and metamaterials by two-dimensional subwavelength structures. J Mater Chem C, 5, 4361-4378(2017).

    [6] Q Zhu, H W Tian, W X Jiang. Manipulations and applications of radiating waves using electromagnetic metasurfaces. Opto-Electron Eng, 50, 230115(2023).

    [8] H Y Fan, J Luo. Research progress of reflectionless electromagnetic metasurfaces. Opto-Electron Eng, 50, 230147(2023).

    [9] X L Ma, W B Pan, C Huang et al. An active metamaterial for polarization manipulating. Adv Opt Mater, 2, 945-949(2014).

    [10] T Nan, H Zhao, J Y Guo et al. Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces. Opto-Electron Sci, 3, 230052(2024).

    [11] R Fu, K X Chen, Z L Li et al. Metasurface-based nanoprinting: principle,design and advances. Opto-Electron Sci, 1, 220011(2022).

    [12] P J Wei, S Y Xiao, Y D Xu et al. Metasurface-loaded waveguide for transformation optics applications. J Opt, 18, 044015(2016).

    [13] H Y Chen, R X Miao, M Li. Transformation optics that mimics the system outside a Schwarzschild black hole. Opt Express, 18, 15183-15188(2010).

    [14] Z B Zhang, P F Zhao, J K Liao et al. Vortex decomposition and reconfiguration via transformation optics. Phys Rev Appl, 21, 054006(2024).

    [15] S S Jie, S W Xue, Z W Yang et al. Shear polaritons from transformation optics. Opt Lett, 48, 2688-2691(2023).

    [16] Y D Xu, Y Y Fu, H Y Chen. Steering light by a sub-wavelength metallic grating from transformation optics. Sci Rep, 5, 12219(2015).

    [17] Y C Liu, F Sun, S L He. Novel thermal lens for remote heating/cooling designed with transformation optics. Opt Express, 24, 5683-5692(2016).

    [18] R L Xu, Z N Chen. A hemispherical wide-angle beamsteering near-surface focal-plane metamaterial luneburg lens antenna using transformation-optics. IEEE Trans Antennas Propag, 70, 4224-4233(2022).

    [19] F Sun, S W Guo, Y C Liu et al. A magnifying glass for virtual imaging of subwavelength resolution by transformation optics. Adv Mater, 30, 1801641(2018).

    [20] C F Yang, M Huang, J J Yang et al. Design of open devices based on multi-folded transformation optics. J Phys Commun, 4, 045007(2020).

    [21] L Peng, D Q Liu, H F Cheng et al. A multilayer film based selective thermal emitter for infrared stealth technology. Adv Opt Mater, 6, 1801006(2018).

    [22] Y Wu, S J Tan, Y Zhao et al. Broadband multispectral compatible absorbers for radar,infrared and visible stealth application. Prog Mater Sci, 135, 101088(2023).

    [23] S H Kim, S Y Lee, Y L Zhang et al. Carbon-based radar absorbing materials toward stealth technologies. Adv Sci, 10, 2303104(2023).

    [24] H H Chen, W L Ma, Z Y Huang et al. Graphene-based materials toward microwave and terahertz absorbing stealth technologies. Adv Opt Mater, 7, 1801318(2019).

    [25] Z J Gartner, J L Hu. Guiding tissue-scale self-organization. Nat Mater, 20, 2-3(2021).

    [26] Y Zhao, G B Ji. Multi-spectrum bands compatibility: new trends in stealth materials research. Sci China Mater, 65, 2936-2941(2022).

    [27] J Kim, K Han, J W Hahn. Selective dual-band metamaterial perfect absorber for infrared stealth technology. Sci Rep, 7, 6740(2017).

    [28] Ananth P Balaji, N Abhiram, Krishna K Hari et al. Synthesis of radar absorption material for stealth application. Mater Today: Proc, 47, 4872-4878(2021).

    [29] A Alù, N Engheta. Cloaking a sensor. Phys Rev Lett, 102, 233901(2009).

    [30] A Greenleaf, Y Kurylev, M Lassas et al. Cloaking a sensor via transformation optics. Phys Rev E, 83, 016603(2011).

    [31] A Alù, N Engheta. Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging. Phys Rev Lett, 105, 263906(2010).

    [32] P Y Fan, U K Chettiar, L Y Cao et al. An invisible metal-semiconductor photodetector. Nat Photonics, 6, 380-385(2012).

    [33] S Vellucci, A Monti, M Barbuto et al. Satellite applications of electromagnetic cloaking. IEEE Trans Antennas Propag, 65, 4931-4934(2017).

    [34] A Monti, J Soric, M Barbuto et al. Mantle cloaking for co-site radio-frequency antennas. Appl Phys Lett, 108, 113502(2016).

    [35] Z H Jiang, P E Sieber, L Kang et al. Restoring intrinsic properties of electromagnetic radiators using ultralightweight integrated metasurface cloaks. Adv Funct Mater, 25, 4708-4716(2015).

    [36] J Soric, Y Ra’di, D Farfan et al. Radio-transparent dipole antenna based on a metasurface cloak. Nat Commun, 13, 1114(2022).

    [37] F B Arango, F Alpeggiani, D Conteduca et al. Cloaked near-field probe for non-invasive near-field optical microscopy. Optica, 9, 684-691(2022).

    [38] J Li, J B Pendry. Hiding under the carpet: a new strategy for cloaking. Phys Rev Lett, 101, 203901(2008).

    [39] P Zhang, Y Jin, S L He. Cloaking an object on a dielectric half-space. Opt Express, 16, 3161-3166(2008).

    [40] L H Gabrielli, J Cardenas, C B Poitras et al. Silicon nanostructure cloak operating at optical frequencies. Nat Photonics, 3, 461-463(2009).

    [41] J Valentine, J Li, T Zentgraf et al. An optical cloak made of dielectrics. Nat Mater, 8, 568-571(2009).

    [42] R Liu, C Ji, J J Mock et al. Broadband ground-plane cloak. Science, 323, 366-369(2009).

    [43] H F Ma, T J Cui. Three-dimensional broadband ground-plane cloak made of metamaterials. Nat Commun, 1, 21(2010).

    [44] T Ergin, N Stenger, P Brenner et al. Three-dimensional invisibility cloak at optical wavelengths. Science, 328, 337-339(2010).

    [45] X Z Chen, Y Luo, J J Zhang et al. Macroscopic invisibility cloaking of visible light. Nat Commun, 2, 176(2010).

    [46] M Gharghi, C Gladden, T Zentgraf et al. A carpet cloak for visible light. Nano Lett, 11, 2825-2828(2011).

    [47] D Shin, Y Urzhumov, Y Jung et al. Broadband electromagnetic cloaking with smart metamaterials. Nat Commun, 3, 1213(2012).

    [48] X H Shi, F Gao, X Lin et al. Electromagnetic detection of a perfect carpet cloak. Sci Rep, 5, 10401(2015).

    [49] Z J Jiang, Q X Liang, Z H Li et al. A 3D carpet cloak with non-euclidean metasurfaces. Adv Opt Mater, 8, 2000827(2020).

    [50] H X Xu, G W Hu, Y Z Wang et al. Polarization-insensitive 3D conformal-skin metasurface cloak. Light Sci Appl, 10, 75(2021).

    [51] Y Maegawa, Y Nakata, A Sanada. All-dielectric carpet cloaks with three-dimensional anisotropy control. Nanophotonics, 12, 2623-2636(2023).

    [52] C Lv, P Ding, X M Tian et al. Broadband and wide-angle terahertz carpet cloaks based on pattered graphene metasurfaces. J Phys D Appl Phys, 53, 155107(2020).

    [53] X M Tian, J W Xu, K Xu et al. Phase-change reconfigurable metasurface for broadband,wide-angle,continuously tunable and switchable cloaking. Opt Express, 29, 5959-5971(2021).

    [54] A Fallah, A Kalhor, L Yousefi. Developing a carpet cloak operating for a wide range of incident angles using a deep neural network and PSO algorithm. Sci Rep, 13, 670(2023).

    [55] A M Esfahani, L Yousefi. Low profile multi-layered invisibility carpet cloak using quantum dot core-shell nanoparticles. Sci Rep, 13, 3450(2023).

    [56] M H Fakheri, A Abdolali. Ultrathin carpet cloak enabled by infinitely anisotropic medium. Sci Rep, 13, 17695(2023).

    [57] F Sun, B Zheng, H S Chen et al. Transformation optics: from classic theory and applications to its new branches. Laser Photonics Rev, 11, 1700034(2017).

    [58] B L Zhang. Electrodynamics of transformation-based invisibility cloaking. Light Sci Appl, 1, e32(2012).

    [59] A Greenleaf, Y Kurylev, M Lassas et al. Cloaking devices,electromagnetic wormholes,and transformation optics. SIAM Rev, 51, 3-33(2009).

    [60] Dantzig D van. The fundamental equations of electromagnetism,independent of metrical geometry. Math Proc Camb Phil Soc, 30, 421-427(1934).

    [61] L S Dolin. On the possibility of comparison of three-dimensional electromagnetic systems with non-uniform anisotropic filling. Izv. VUZov,Radiofizika, 4, 964-967(1961).

    [62] M Lax, D F Nelson. Maxwell equations in material form. Phys Rev B, 13, 1777-1784(1976).

    [63] A J Ward, J B Pendry. Refraction and geometry in Maxwell's equations. J Mod Opt, 43, 773-793(1996).

    [64] F L Teixeira, W C Chew. Lattice electromagnetic theory from a topological viewpoint. J Math Phys, 40, 169-187(1999).

    [65] F L Teixeira, W C Chew. Differential forms,metrics,and the reflectionless absorption of electromagnetic waves. J Electromagn Waves Appl, 13, 665-686(1999).

    [66] U Leonhardt, T Philbin. Geometry and Light: The Science of Invisibility(2010).

    [67] H Y Chen. Transformation optics in orthogonal coordinates. J Opt A Pure Appl Opt, 11, 075102(2009).

    [68] J C Miñano, P Benítez, J C González. Perfect imaging with geodesic waveguides. New J Phys, 12, 123023(2010).

    [69] F J Garcia-Vidal, L Martin-Moreno, T W Ebbesen et al. Light passing through subwavelength apertures. Rev Mod Phys, 82, 729-787(2010).

    [70] M M Sadeghi, S C Li, L Xu et al. Transformation optics with Fabry-Pérot resonances. Sci Rep, 5, 8680(2015).

    [71] L Xu, Q N Wu, Y Y Zhou et al. Transformation devices with optical nihility media and reduced realizations. Front Phys, 14, 42501(2019).

    [72] P F Zhao, L Xu, G X Cai et al. A feasible approach to field concentrators of arbitrary shapes. Front Phys, 13, 134205(2018).

    [73] A C Chen, Y Y Fu, Y D Xu et al. Total transmission through a sub-wavelength slit based on Fabry–Pérot resonance and zero-index metamaterials. J Opt, 17, 105602(2015).

    [74] D Schurig, J J Mock, B J Justice et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, 977-980(2006).

    [75] W S Cai, U K Chettiar, A V Kildishev et al. Optical cloaking with metamaterials. Nat Photonics, 1, 224-227(2007).

    [76] Y Huang, Y J Feng, T Jiang. Electromagnetic cloaking by layered structure of homogeneous isotropic materials. Opt Express, 15, 11133-11141(2007).

    [77] B Kanté, Lustrac A De, J M Lourtioz et al. Infrared cloaking based on the electric response of split ring resonators. Opt Express, 16, 9191-9198(2008).

    [78] B Kanté, D Germain, Lustrac A de. Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies. Phys Rev B, 80, 201104(2009).

    [79] N Landy, D R Smith. A full-parameter unidirectional metamaterial cloak for microwaves. Nat Mater, 12, 25-28(2013).

    [80] H S Chen, B Zheng, L Shen et al. Ray-optics cloaking devices for large objects in incoherent natural light. Nat Commun, 4, 2652(2013).

    [81] L Shen, B Zheng, Z Z Liu et al. Large‐scale far‐infrared invisibility cloak hiding object from thermal detection. Adv Opt Mater, 3, 1738-1742(2015).

    [82] A Keivaan, M H Fakheri, A Abdolali et al. Design of coating materials for cloaking and directivity enhancement of cylindrical antennas using transformation optics. IEEE Antennas Wirel Propag Lett, 16, 3122-3125(2017).

    [83] B Zheng, R R Zhu, L Q Jing et al. 3D Visible‐light invisibility cloak. Adv Sci, 5, 1800056(2018).

    [84] F Sun, Y J Zhang, J Evans et al. A camouflage device without metamaterials. Prog Electromagn Res, 165, 107-117(2019).

    [85] B Zheng, Y H Yang, Z P Shao et al. Experimental realization of an extreme-parameter omnidirectional cloak. Research, 2019, 8282641(2019).

    [86] B Wang, F Sun, H C Chen et al. Full-space omnidirectional cloak by subwavelength metal channels filled with homogeneous dielectrics. Opt Express, 30, 21386-21395(2022).

    [87] Y C Liu, F Sun, Y B Yang et al. A metamaterial-free omnidirectional invisibility cloak based on thrice transformations inside optic-null medium. Opt Laser Technol, 157, 108779(2023).

    [88] B Zheng, H Lu, C Qian et al. Revealing the transformation invariance of full-parameter omnidirectional invisibility cloaks. Electromagn Sci, 1, 0020092(2023).

    [89] X J Hu, Y Luo, J Wang et al. Multiband omnidirectional invisibility cloak. Adv Sci, 11, 2401295(2024).

    [90] Y Gao, Y Luo, J J Zhang et al. Full-parameter omnidirectional transformation optical devices. Natl Sci Rev, 11, nwad171(2024).

    [91] U Leonhardt. Optical conformal mapping. Science, 312, 1777-1780(2006).

    [92] Y Urzhumov, N Landy, D R Smith. Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves. J Appl Phys, 111, 053105(2012).

    [93] L Xu, H Y Chen. Transformation optics with artificial Riemann sheets. New J Phys, 15, 113013(2013).

    [94] C H Zhu, L J Liu, Z Y Song et al. Optimized invisibility cloaks from the Logarithm conformal mapping. Sci Rep, 6, 38443(2016).

    [95] W J Lv, J J Zhou, Y J Liu et al. Non-Euclidean conformal devices with continuously varying refractive-index profiles based on bispheres. Phys Rev A, 109, 063506(2024).

    [96] U Leonhardt, T Tyc. Broadband invisibility by non-Euclidean cloaking. Science, 323, 110-112(2009).

    [97] T Xu, Y C Liu, Y Zhang et al. Perfect invisibility cloaking by isotropic media. Phys Rev A, 86, 043827(2012).

    [98] Y C Liu, F Sun, S L He. Controlling lightwave in Riemann space by merging geometrical optics with transformation optics. Sci Rep, 8, 514(2018).

    [99] L Xu, H Y Chen. Conformal transformation optics. Nat Photonics, 9, 15-23(2015).

    [100] Y G Ma, Y C Liu, L Lan et al. First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping. Sci Rep, 3, 2182(2013).

    [101] J C Howell, J B Howell, J S Choi. Amplitude-only,passive,broadband,optical spatial cloaking of very large objects. Appl Opt, 53, 1958-1963(2014).

    [102] J S Choi, J C Howell. Paraxial ray optics cloaking. Opt Express, 22, 29465-29478(2014).

    [103] D Banerjee, C G Ji, H Iizuka. Invisibility cloak with image projection capability. Sci Rep, 6, 38965(2016).

    [104] J S Choi, J C Howell. Digital integral cloaking. Optica, 3, 536-540(2016).

    [105] J Bělín, T Tyc, M Grunwald et al. Ideal-lens cloaks and new cloaking strategies. Opt Express, 27, 37327-37336(2019).

    [106] J Courtial, J Bělín, M Soboňa et al. Shifty invisibility cloaks. Opt Express, 32, 11-25(2024).

    [107] A Alù, N Engheta. Plasmonic materials in transparency and cloaking problems: mechanism,robustness,and physical insights. Opt Express, 15, 3318-3332(2007).

    [108] A Alù, N Engheta. Achieving transparency with plasmonic and metamaterial coatings. Phys Rev E, 72, 016623(2005).

    [109] A Alù, N Engheta. Multifrequency optical invisibility cloak with layered plasmonic shells. Phys Rev Lett, 100, 113901(2008).

    [110] D Rainwater, A Kerkhoff, K Melin et al. Experimental verification of three-dimensional plasmonic cloaking in free-space. New J Phys, 14, 013054(2012).

    [111] S Mühlig, A Cunningham, J Dintinger et al. A self-assembled three-dimensional cloak in the visible. Sci Rep, 3, 2328(2013).

    [112] W J M Kort-Kamp, F S S Rosa, F A Pinheiro et al. Tuning plasmonic cloaks with an external magnetic field. Phys Rev Lett, 111, 215504(2013).

    [113] M Farhat, C Rockstuhl, H Bağcı. A 3D tunable and multi-frequency graphene plasmonic cloak. Opt Express, 21, 12592-12603(2013).

    [114] M Fruhnert, A Monti, I Fernandez-Corbaton et al. Tunable scattering cancellation cloak with plasmonic ellipsoids in the visible. Phys Rev B, 93, 245127(2016).

    [115] M Naserpour, C J Zapata-Rodríguez, S M Vuković et al. Tunable invisibility cloaking by using isolated graphene-coated nanowires and dimers. Sci Rep, 7, 12186(2017).

    [116] M I Khan, S Ghosh, R Baxter et al. Modeling broadband cloaking using 3D nano-assembled plasmonic meta-structures. Opt Express, 28, 22732-22747(2020).

    [117] K Hansen, A Dutta, M Cardona et al. Zirconium nitride for plasmonic cloaking of visible nanowire photodetectors. Plasmonics, 15, 1231-1241(2020).

    [118] H C Chu, Q Li, B B Liu et al. A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials. Light Sci Appl, 7, 50(2018).

    [119] A Alù. Mantle cloak: invisibility induced by a surface. Phys Rev B, 80, 245115(2009).

    [120] P Y Chen, A Alù. Mantle cloaking using thin patterned metasurfaces. Phys Rev B, 84, 205110(2011).

    [121] F F Qin, Z Z Liu, Q Zhang et al. Mantle cloaks based on the frequency selective metasurfaces designed by Bayesian optimization. Sci Rep, 8, 14033(2018).

    [122] P Yuste, J M Rius, J Romeu et al. A microwave invisibility cloak: the design,simulation,and measurement of a simple and effective frequency-selective surface-based mantle cloak. IEEE Antennas Propag Mag, 60, 49-59(2018).

    [123] H Lee, D H Kwon. Microwave metasurface cloaking for freestanding objects. Phys Rev Appl, 17, 054012(2022).

    [124] A Monti, M Barbuto, A Toscano et al. Nonlinear mantle cloaking devices for power-dependent antenna arrays. IEEE Antennas Wirel Propag Lett, 16, 1727-1730(2017).

    [125] S Vellucci, A Monti, M Barbuto et al. Waveform-selective mantle cloaks for intelligent antennas. IEEE Trans Antennas Propag, 68, 1717-1725(2020).

    [126] S Vellucci, A Monti, M Barbuto et al. On the use of nonlinear metasurfaces for circumventing fundamental limits of mantle cloaking for antennas. IEEE Trans Antennas Propag, 69, 5048-5053(2021).

    [127] R Masoumi, R Kazemi, A E Fathy. Design and implementation of elliptical mantle cloaks for polarization decoupling of two tightly spaced interleaved co-frequency patch array antennas. Sci Rep, 13, 2885(2023).

    [128] P Y Chen, A Alù. Atomically thin surface cloak using graphene monolayers. ACS Nano, 5, 5855-5863(2011).

    [129] H Bodur, S Çimen. Scattering suppression with dual-band single-layer mantle cloak for cylindrical metasurface. AEU-Int J Electron Commun, 168, 154741(2023).

    [130] P Y Chen, J Soric, Y R Padooru et al. Nanostructured graphene metasurface for tunable terahertz cloaking. New J Phys, 15, 123029(2013).

    [131] Z Hamzavi-Zarghani, A Yahaghi, L Matekovits et al. Tunable mantle cloaking utilizing graphene metasurface for terahertz sensing applications. Opt Express, 27, 34824-34837(2019).

    [132] Z Hamzavi-Zarghani, A Yahaghi, L Matekovits. Electrically tunable mantle cloaking utilizing graphene metasurface for oblique incidence. AEU-Int J Electron Commun, 116, 153080(2020).

    [133] S Pawar, H M Bernety, A B Yakovlev. Graphene-metal metasurface for cloaking of cylindrical objects at low-terahertz frequencies. IEEE Access, 10, 130200-130211(2022).

    [134] Y Lai, H Y Chen, Z Q Zhang et al. Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. Phys Rev Lett, 102, 093901(2009).

    [135] B Zheng, H A Madni, R Hao et al. Concealing arbitrary objects remotely with multi-folded transformation optics. Light Sci Appl, 5, e16177(2016).

    [136] F Sun, S L He. A third way to cloak an object: cover-up with a background object (Invited Paper). Prog Electromagn Res, 149, 173-182(2014).

    [137] F Sun, Y C Liu, Y B Yang et al. Full space destructive interference by acoustic-null medium. Appl Phys Express, 12, 074003(2019).

    [138] L Lan, F Sun, Y C Liu et al. Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization. Appl Phys Lett, 103, 121113(2013).

    [139] G Fujii, Y Akimoto. Electromagnetic-acoustic biphysical cloak designed through topology optimization. Opt Express, 30, 6090-6106(2022).

    [140] F G Vasquez, G W Milton, D Onofrei. Active exterior cloaking for the 2D Laplace and Helmholtz equations. Phys Rev Lett, 103, 073901(2009).

    [141] T Philbin. Cloaking at a distance. Physics, 2, 17(2009).

    [142] Y Lai, J Ng, H Y Chen et al. Illusion optics: the optical transformation of an object into another object. Phys Rev Lett, 102, 253902(2009).

    [143] J Pendry. All smoke and metamaterials. Nature, 460, 579-580(2009).

    [144] X D Luo, T Yang, Y W Gu et al. Conceal an entrance by means of superscatterer. Appl Phys Lett, 94, 223513(2009).

    [145] F Sun, S L He. Invisible gateway for both light waves and rays. Opt Express, 26, 165-172(2018).

    [146] Y C Xu, Y C Liu, H M Fei et al. Asymmetric universal invisible gateway. Opt Express, 28, 35363-35375(2020).

    [147] T Yang, H Y Chen, X D Luo et al. Superscatterer: enhancement of scattering with complementary media. Opt Express, 16, 18545-18550(2008).

    [148] X F Zang, C Shi, Z Li et al. Illusion induced overlapped optics. Opt Express, 22, 582-592(2014).

    [149] F Sun, S L He. Overlapping illusions by transformation optics without any negative refraction material. Sci Rep, 6, 19130(2016).

    [150] F Sun, Y Liu, S He. True dynamic imaging and image composition by the optical translational projector. J Opt, 18, 044012(2016).

    [151] F Sun, S C Li, S L He. Translational illusion of acoustic sources by transformation acoustics. J Acoust Soc Am, 142, 1213-1218(2017).

    [152] C Li, X K Meng, X Liu et al. Experimental realization of a circuit-based broadband illusion-optics analogue. Phys Rev Lett, 105, 233906(2010).

    [153] W X Jiang, C Y Luo, S Ge et al. An optically controllable transformation-dc illusion device. Adv Mater, 27, 4628-4633(2015).

    [154] W X Jiang, H F Ma, Q Cheng et al. Illusion media: generating virtual objects using realizable metamaterials. Appl Phys Lett, 96, 121910(2010).

    [155] F Sun, S L He. Transformation magneto-statics and illusions for magnets. Sci Rep, 4, 6593(2014).

    [156] C F Yang, J J Yang, M Huang et al. An external cloak with arbitrary cross section based on complementary medium and coordinate transformation. Opt Express, 19, 1147-1157(2011).

    [157] F F Huo, L Li, T Li et al. External invisibility cloak for multiobjects with arbitrary geometries. IEEE Antennas Wirel Propag Lett, 13, 273-276(2014).

    [158] P Vura, A Rajput, K V Srivastava. Composite-shaped external cloaks with homogeneous material properties. IEEE Antennas Wirel Propag Lett, 15, 282-285(2016).

    [159] Y Shi, W Tang, L Li et al. Three-dimensional complementary invisibility cloak with arbitrary shapes. IEEE Antennas Wirel Propag Lett, 14, 1550-1553(2015).

    [160] A Rajput, K V Srivastava. Approximated complementary cloak with diagonally homogeneous material parameters using shifted parabolic coordinate system. IEEE Trans Antennas Propag, 65, 1458-1463(2017).

    [161] J H Holland. Genetic algorithms. Sci Am, 267, 66-73(1992).

    [163] Z Michalewicz, M Schoenauer. Evolutionary algorithms for constrained parameter optimization problems. Evol Comput, 4, 1-32(1996).

    [164] S Katoch, S S Chauhan, V Kumar. A review on genetic algorithm: past,present,and future. Multimed Tools Appl, 80, 8091-8126(2021).

    [165] S Xi, H S Chen, B L Zhang et al. Route to low-scattering cylindrical cloaks with finite permittivity and permeability. Phys Rev B, 79, 155122(2009).

    [167] Z Z Yu, Y J Feng, X F Xu et al. Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials. J Phys D Appl Phys, 44, 185102(2011).

    [168] X H Wang, E Semouchkina. A route for efficient non-resonance cloaking by using multilayer dielectric coating. Appl Phys Lett, 102, 113506(2013).

    [169] A Mirzaei, A E Miroshnichenko, I V Shadrivov et al. All-dielectric multilayer cylindrical structures for invisibility cloaking. Sci Rep, 5, 9574(2015).

    [170] S Xu, X X Cheng, S Xi et al. Experimental demonstration of a free-space cylindrical cloak without superluminal propagation. Phys Rev Lett, 109, 223903(2012).

    [171] E Bor, C Babayigit, H Kurt et al. Directional invisibility by genetic optimization. Opt Lett, 43, 5781-5784(2018).

    [172] M P Bendsøe, N Kikuchi. Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng, 71, 197-224(1988).

    [173] J Andkjær, O Sigmund. Topology optimized low-contrast all-dielectric optical cloak. Appl Phys Lett, 98, 021112(2011).

    [174] J Andkjær, Mortensen N Asger, O Sigmund. Towards all-dielectric,polarization-independent optical cloaks. Appl Phys Lett, 100, 101106(2012).

    [175] G Fujii, H Watanabe, T Yamada et al. Level set based topology optimization for optical cloaks. Appl Phys Lett, 102, 251106(2013).

    [176] Y Urzhumov, N Landy, T Driscoll et al. Thin low-loss dielectric coatings for free-space cloaking. Opt Lett, 38, 1606-1608(2013).

    [177] W Sha, M Xiao, Y H Wang et al. Topology optimization methods for thermal metamaterials: a review. Int J Heat Mass Transfer, 227, 125588(2024).

    [178] Y F Lu, L Y Tong. Concurrent multiscale topology optimization of metamaterials for mechanical cloak. Comput Methods Appl Mech Eng, 409, 115966(2023).

    [179] G Fujii, Y Akimoto. dc electric cloak concentrator via topology optimization. Phys Rev E, 102, 033308(2020).

    [180] Y Noguchi, T Yamada, K Izui et al. Topology optimization for hyperbolic acoustic metamaterials using a high-frequency homogenization method. Comput Methods Appl Mech Eng, 335, 419-471(2018).

    [181] G Fujii. Biphysical undetectable concentrators manipulating both heat flux and direct current via topology optimization. Phys Rev E, 106, 065304(2022).

    [182] G Fujii, Y Akimoto. Optimizing the structural topology of bifunctional invisible cloak manipulating heat flux and direct current. Appl Phys Lett, 115, 174101(2019).

    [183] Z Zhu, Z C Wang, T F Liu et al. Arbitrary-shape transformation multiphysics cloak by topology optimization. Int J Heat Mass Transfer, 222, 125205(2024).

    [184] Y Sato, K Izui, T Yamada et al. Robust topology optimization of optical cloaks under uncertainties in wave number and angle of incident wave. Int J Numerical Methods Eng, 121, 3926-3954(2020).

    [185] Y M Guo, L B Zhong, L Min et al. Adaptive optics based on machine learning: a review. Opto-Electron Adv, 5, 200082(2022).

    [186] S Krasikov, A Tranter, A Bogdanov et al. Intelligent metaphotonics empowered by machine learning. Opto-Electron Adv, 5, 210147(2022).

    [187] H Lin, J J Hou, J Jin et al. Machine-learning-assisted inverse design of scattering enhanced metasurface. Opt Express, 30, 3076-3088(2022).

    [188] J Y Wang, R Xi, T Cai et al. Deep neural network with data cropping algorithm for absorptive frequency‐selective transmission metasurface. Adv Opt Mater, 10, 2200178(2022).

    [189] K Yao, R Unni, Y B Zheng. Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale. Nanophotonics, 8, 339-366(2019).

    [190] X R Zhang, T J Cui. Artificial intelligence-assisted chiral nanophotonic designs. Opto-Electron Adv, 6, 230057(2023).

    [191] C Xie, H N Li, C Y Cui et al. Deep learning assisted inverse design of metamaterial microwave absorber. Appl Phys Lett, 123, 181701(2023).

    [192] S K Patel, J Parmar, V Katkar. Ultra-broadband,wide-angle plus-shape slotted metamaterial solar absorber design with absorption forecasting using machine learning. Sci Rep, 12, 10166(2022).

    [193] L L Li, H T Zhao, C Liu et al. Intelligent metasurfaces: control,communication and computing. eLight, 2, 7(2022).

    [194] S Shin, D Shin, N Kang. Topology optimization via machine learning and deep learning: a review. J Comput Des Eng, 10, 1736-1766(2023).

    [195] C Qian, B Zheng, Y C Shen et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat Photonics, 14, 383-390(2020).

    [196] Z Zhen, C Qian, Y T Jia et al. Realizing transmitted metasurface cloak by a tandem neural network. Photonics Res, 9, B229-B235(2021).

    [197] A P Blanchard-Dionne, O J F Martin. Successive training of a generative adversarial network for the design of an optical cloak. OSA Continuum, 4, 87-95(2020).

    [198] N X Wu, Y T Jia, C Qian et al. Pushing the limits of metasurface cloak using global inverse design. Adv Opt Mater, 11, 2202130(2023).

    [199] J K Zuo, M Y Pan, H G Duan et al. Review on new infrared stealth structural materials. Opto-Electron Eng, 50, 220218(2023).

    [200] L Sanchis, V M García-Chocano, R Llopis-Pontiveros et al. Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere. Phys Rev Lett, 110, 124301(2013).

    [201] S A Cummer, B I Popa, D Schurig et al. Scattering theory derivation of a 3D acoustic cloaking shell. Phys Rev Lett, 100, 024301(2008).

    [202] K Y Sun, F L Zhang, S Chen et al. Broadband acoustic illusion coating based on thin conformal metasurface. iScience, 27, 110504(2024).

    [203] Y G Ma, L Lan, W Jiang et al. A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity. NPG Asia Mater, 5, e73(2013).

    [204] J Wang, G L Dai, J P Huang. Thermal metamaterial: fundamental,application,and outlook. iScience, 23, 101637(2020).

    [205] H Y Xu, X H Shi, F Gao et al. Ultrathin three-dimensional thermal cloak. Phys Rev Lett, 112, 054301(2014).

    [206] S Narayana, Y Sato. Heat flux manipulation with engineered thermal materials. Phys Rev Lett, 108, 214303(2012).

    [207] R Schittny, M Kadic, S Guenneau et al. Experiments on transformation thermodynamics: molding the flow of heat. Phys Rev Lett, 110, 195901(2013).

    [209] T C Han, X Bai, D L Gao et al. Experimental demonstration of a bilayer thermal cloak. Phys Rev Lett, 112, 054302(2014).

    [210] F Gömöry, M Solovyov, J Šouc et al. Experimental realization of a magnetic cloak. Science, 335, 1466-1468(2012).

    [211] F Sun, S L He. DC magnetic concentrator and omnidirectional cascaded cloak by using only one or two homogeneous anisotropic materials of positive permeability. Prog Electromagn Res, 142, 683-699(2013).

    [212] S Narayana, Y Sato. DC magnetic cloak. Adv Mater, 24, 71-74(2012).

    [213] F Avanzini, G Falasco, M Esposito. Chemical cloaking. Phys Rev E, 101, 060102(2020).

    [214] X C Xu, C Wang, W Shou et al. Physical realization of elastic cloaking with a polar material. Phys Rev Lett, 124, 114301(2020).

    [215] N Stenger, M Wilhelm, M Wegener. Experiments on elastic cloaking in thin plates. Phys Rev Lett, 108, 014301(2012).

    [216] F Sun, Y C Liu, S L He. Surface transformation multi-physics for controlling electromagnetic and acoustic waves simultaneously. Opt Express, 28, 94-106(2020).

    [217] Y G Ma, Y C Liu, M Raza et al. Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously. Phys Rev Lett, 113, 205501(2014).

    [218] J Y Li, Y Gao, J P Huang. A bifunctional cloak using transformation media. J Appl Phys, 108, 074501(2010).

    [219] M Raza, Y C Liu, Y G Ma. A multi-cloak bifunctional device. J Appl Phys, 117, 024502(2015).

    [220] M Ahsan, F Sun. A thermal-electric cloak via nonlinear transformation. IEEE Photonics J, 15, 4601406(2023).

    [221] Y C Liu, X M Ma, K Chao et al. Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium. Opto-Electron Sci, 3, 230027(2024).

    [222] Y C Liu, H C Chen, G Zhao et al. On-chip omnidirectional electromagnetic-thermal cloak. iScience, 27, 110105(2024).

    [223] Y H Yang, H P Wang, F X Yu et al. A metasurface carpet cloak for electromagnetic,acoustic and water waves. Sci Rep, 6, 20219(2016).

    [224] J Xu, X Jiang, N Fang et al. Molding acoustic,electromagnetic and water waves with a single cloak. Sci Rep, 5, 10678(2015).

    [225] H C Chen, Y C Liu, F Sun et al. A thermal–EM concentrator for enhancing EM signals and focusing heat fluxes simultaneously. Laser Photonics Rev(2024).

    [226] Z H Chen, F Sun, Y C Liu et al. Electromagnetic-acoustic splitter with a tunable splitting ratio based on copper plates. Opt Lett, 48, 3407-3410(2023).

    [227] J F Yang, S B Qu, H Ma et al. Ultra-broadband co-polarization anomalous reflection metasurface. Appl Phys A, 123, 537(2017).

    [228] C Ji, C Huang, X Zhang et al. Broadband low-scattering metasurface using a combination of phase cancellation and absorption mechanisms. Opt Express, 27, 23368-23377(2019).

    [229] X Xie, M B Pu, X Li et al. Dual-band and ultra-broadband photonic spin-orbit interaction for electromagnetic shaping based on single-layer silicon metasurfaces. Photonics Res, 7, 586-593(2019).

    [230] M R Akram, G W Ding, K Chen et al. Ultrathin single layer metasurfaces with ultra‐wideband operation for both transmission and reflection. Adv Mater, 32, 1907308(2020).

    [231] X J Lu, X Y Li, Y H Guo et al. Broadband high-efficiency polymerized liquid crystal metasurfaces with spin-multiplexed functionalities in the visible. Photonics Res, 10, 1380-1393(2022).

    [232] H C Zhang, Z J Zhang, X L Ma et al. Polarization multiplexing metasurface for dual-band achromatic focusing. Opt Express, 30, 12069-12079(2022).

    [233] J N Yang, C Huang, X Y Wu et al. Dual‐wavelength carpet cloak using ultrathin metasurface. Adv Opt Mater, 6, 1800073(2018).

    [234] Y J Huang, M B Pu, F Zhang et al. Broadband functional metasurfaces: achieving nonlinear phase generation toward achromatic surface cloaking and lensing. Adv Opt Mater, 7, 1801480(2019).

    [235] L Hsu, A Ndao, B Kanté. Broadband and linear polarization metasurface carpet cloak in the visible. Opt Lett, 44, 2978-2981(2019).

    [236] P Ding, M Y Li, X M Tian et al. Graphene metasurface for broadband,wide-angle and polarization-insensitive carpet cloak. Opt Mater, 121, 111578(2021).

    [237] Y L Li, J F Xu, F H Liu et al. Broadband achromatic transmission stealth cloak based on all dielectric metasurfaces. Phys Scr, 99, 075536(2024).

    [238] Q X Liang, H Y Yin, J K Feng et al. An additively manufactured wide angle and broadband electromagnetic camouflage metasurface. Adv Eng Mater, 25, 2201728(2023).

    [239] T J Cui, M Q Qi, X Wan et al. Coding metamaterials,digital metamaterials and programmable metamaterials. Light Sci Appl, 3, e218(2014).

    [240] Z Y Zhang, H Y Shi, L Y Wang et al. Recent advances in reconfigurable metasurfaces: principle and applications. Nanomaterials, 13, 534(2023).

    [241] J T Tian, W H Cao. Reconfigurable flexible metasurfaces: from fundamentals towards biomedical applications. PhotoniX, 5, 2(2024).

    [242] C Huang, B Sun, W B Pan et al. Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface. Sci Rep, 7, 42302(2017).

    [243] C Huang, C L Zhang, J N Yang et al. Reconfigurable metasurface for multifunctional control of electromagnetic waves. Adv Opt Mater, 5, 1700485(2017).

    [244] X G Zhang, W X Tang, W X Jiang et al. Light‐controllable digital coding metasurfaces. Adv Sci, 5, 1801028(2018).

    [245] W H Yang, G Y Qu, F X Lai et al. Dynamic bifunctional metasurfaces for holography and color display. Adv Mater, 33, 2101258(2021).

    [246] Y She, C Ji, C Huang et al. Intelligent reconfigurable metasurface for self-adaptively electromagnetic functionality switching. Photonics Res, 10, 769-776(2022).

    [247] C Huang, B Zhao, J K Song et al. Active transmission/absorption frequency selective surface with dynamical modulation of amplitude. IEEE Trans Antennas Propag, 69, 3593-3598(2021).

    [248] C Huang, W B Pan, X L Ma et al. Multi-spectral metasurface for different functional control of reflection waves. Sci Rep, 6, 23291(2016).

    [249] L B Yan, W M Zhu, P C Wu et al. Adaptable metasurface for dynamic anomalous reflection. Appl Phys Lett, 110, 201904(2017).

    [250] T Cui, B F Bai, H B Sun. Tunable metasurfaces based on active materials. Adv Funct Mater, 29, 1806692(2019).

    [251] N M Estakhri, A Alù. Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces. IEEE Antennas Wirel Propag Lett, 13, 1775-1778(2014).

    [252] Y H Yang, L Q Jing, B Zheng et al. Full‐polarization 3D metasurface cloak with preserved amplitude and phase. Adv Mater, 28, 6866-6871(2016).

    [253] C Huang, J N Yang, X Y Wu et al. Reconfigurable metasurface cloak for dynamical electromagnetic illusions. ACS Photonics, 5, 1718-1725(2018).

    [254] S Xu, F Y Dong, W R Guo et al. Cross-wavelength invisibility integrated with various invisibility tactics. Sci Adv, 6, eabb3755(2020).

    [255] J M Liao, C Ji, L M Yuan et al. Polarization-insensitive metasurface cloak for dynamic illusions with an electromagnetic transparent window. ACS Appl Mater Interfaces, 15, 16953-16962(2023).

    [256] Q Ma, G D Bai, H B Jing et al. Smart metasurface with self-adaptively reprogrammable functions. Light Sci Appl, 8, 98(2019).

    [257] Q Ma, Q R Hong, X X Gao et al. Smart sensing metasurface with self-defined functions in dual polarizations. Nanophotonics, 9, 3271-3278(2020).

    [258] C H Lin, Y S Chen, J T Lin et al. Automatic inverse design of high-performance beam-steering metasurfaces via genetic-type tree optimization. Nano Lett, 21, 4981-4989(2021).

    [259] X G Zhang, Y L Sun, Q Yu et al. Smart Doppler cloak operating in broad band and full polarizations. Adv Mater, 33, 2007966(2021).

    [260] Y T Jia, C Qian, Z X Fan et al. In situ customized illusion enabled by global metasurface reconstruction. Adv Funct Mater, 32, 2109331(2022).

    [261] M Huang, B Zheng, R C Li et al. Evolutionary games‐assisted synchronization metasurface for simultaneous multisource invisibility cloaking. Adv Funct Mater, 34, 2401909(2024).

    [262] C Qian, Y T Jia, Z D Wang et al. Autonomous aeroamphibious invisibility cloak with stochastic-evolution learning. Adv Photonics, 6, 016001(2024).

    [263] T G Ma, H Z Wang, L Guo. OptoGPT: a foundation model for inverse design in optical multilayer thin film structures. Opto-Electron Adv, 7, 240062(2024).

    Tools

    Get Citation

    Copy Citation Text

    Ran Sun, Fei Sun, Yichao Liu. Research progress and development trend of electromagnetic cloaking[J]. Opto-Electronic Engineering, 2024, 51(10): 240191

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 17, 2024

    Accepted: Sep. 26, 2024

    Published Online: Jan. 2, 2025

    The Author Email: Sun Fei (孙非)

    DOI:10.12086/oee.2024.240191

    Topics