Bulletin of the Chinese Ceramic Society, Volume. 43, Issue 1, 147(2024)

Research Progress of Interfacial Bond Properties Between FRP Bars and Seawater Sea-Sand Concrete

KONG Lingyan1... LIU Shuchang1, BAO Jiuwen1,*, YIN Xiangzhen2, CAO Yinlong1 and CUI Yifei1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(59)

    [1] [1] ZHAO Y Y. Experimental study on interfacial bond fatigue performance of CFRP-concrete under marine environment[D]. Qingdao: Qingdao University of Technology, 2015 (in Chinese).

    [2] [2] HU X L, XIAO J Z, ZHANG K J, et al. The state-of-the-art study on durability of FRP reinforced concrete with seawater and sea sand[J]. Journal of Building Engineering, 2022, 51: 104294.

    [3] [3] ZHU D J, LI L F, ZHOU L L, et al. Composition design of ultra-high performance seawater sea-sand concrete and fiber strengthening and toughening[J]. Journal of Hunan University (Natural Sciences), 2023, 50(1): 128-136 (in Chinese).

    [4] [4] DONG Z Q, WU G, ZHAO X L, et al. Bond durability of steel-FRP composite bars embedded in seawater sea-sand concrete under constant bending and shearing stress[J]. Construction and Building Materials, 2018, 192: 808-817.

    [5] [5] TENG J G, XIANG Y, YU T, et al. Development and mechanical behaviour of ultra-high-performance seawater sea-sand concrete[J]. Advances in Structural Engineering, 2019, 22(14): 3100-3120.

    [6] [6] AHMED A, GUO S C, ZHANG Z H, et al. A review on durability of fiber reinforced polymer (FRP) bars reinforced seawater sea sand concrete[J]. Construction and Building Materials, 2020, 256: 119484.

    [7] [7] CERONI F, COSENZA E, GAETANO M, et al. Durability issues of FRP rebars in reinforced concrete members[J]. Cement and Concrete Composites, 2006, 28(10): 857-868.

    [8] [8] ROBERT M, BENMOKRANE B. Combined effects of saline solution and moist concrete on long-term durability of GFRP reinforcing bars[J]. Construction and Building Materials, 2013, 38: 274-284.

    [9] [9] FENG P, WANG J, WANG Y, et al. Effects of corrosive environments on properties of pultruded GFRP plates[J]. Composites Part B: Engineering, 2014, 67: 427-433.

    [10] [10] HASSAN M, BENMOKRANE B, ELSAFTY A, et al. Bond durability of basalt-fiber-reinforced-polymer (BFRP) bars embedded in concrete in aggressive environments[J]. Composites Part B: Engineering, 2016, 106: 262-272.

    [11] [11] DONG Z Q, WU G, XU B, et al. Bond durability of BFRP bars embedded in concrete under seawater conditions and the long-term bond strength prediction[J]. Materials & Design, 2016, 92: 552-562.

    [12] [12] GUO X K, XIONG C S, JIN Z Q, et al. A review on mechanical properties of FRP bars subjected to seawater sea sand concrete environmental effects[J]. Journal of Building Engineering, 2022, 58: 105038.

    [13] [13] YUAN T. Influence of natural exposure on flexural property of FRP rods and concrete beams made of sea water and sea sand[D]. Guangzhou: Guangzhou University, 2019 (in Chinese).

    [14] [14] ZENG X Y. Durability study of sea water and sea sand concrete beams reinforced with BFRP bars[D].Guangzhou: Guangdong University of Technology, 2020 (in Chinese).

    [15] [15] ZENG J J, GAO W Y, DUAN Z J, et al. Axial compressive behavior of polyethylene terephthalate/carbon FRP-confined seawater sea-sand concrete in circular columns[J]. Construction and Building Materials, 2020, 234: 117383.

    [16] [16] SIDDIKA A, AL MAMUN M A, ALYOUSEF R, et al. Strengthening of reinforced concrete beams by using fiber-reinforced polymer composites: a review[J]. Journal of Building Engineering, 2019, 25: 100798.

    [17] [17] LI J W, GRAVINA R J, SMITH S T, et al. Bond strength and bond stress-slip analysis of FRP bar to concrete incorporating environmental durability[J]. Construction and Building Materials, 2020, 261: 119860.

    [18] [18] GAO A, YANG S T, GAO G X, et al. Experimental study on the bond performance between BFRP bars and coral concrete in marine environment[J]. Composites Science and Engineering, 2020(12): 43-53 (in Chinese).

    [19] [19] LU Z Y, SU L Z, LAI J, et al. Bond durability of BFRP bars embedded in concrete with fly ash in aggressive environments[J]. Composite Structures, 2021, 271: 114121.

    [20] [20] HAO Q D, WANG Y L, HE Z, et al. Bond strength of glass fiber reinforced polymer ribbed rebars in normal strength concrete[J]. Construction and Building Materials, 2009, 23(2): 865-871.

    [21] [21] CHEN Y H. Study on bond durability of GFRP bars concrete interface in seawater immersion environment[D]. Guangzhou: Guangdong University of Technology, 2021 (in Chinese).

    [22] [22] GAO J, FAN L Y. Experiment on bond performance between CFRP bar and seawater sea sand concrete and its working mechanism[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1194-1204 (in Chinese).

    [23] [23] WANG L, LI W, CHEN S, et al. Effects of sea water soaking on the bonding properties of FRP bars-coral concrete[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3458-3465 (in Chinese).

    [24] [24] TAHA A, ALNAHHAL W. Bond durability and service life prediction of BFRP bars to steel FRC under aggressive environmental conditions[J]. Composite Structures, 2021, 269: 114034.

    [25] [25] ZHANG B, ZHU H, CAO R M, et al. Feasibility of using geopolymers to investigate the bond behavior of FRP bars in seawater sea-sand concrete[J]. Construction and Building Materials, 2021, 282: 122636.

    [26] [26] SHAN B, TONG G Q, LIU Q Y. Experiment on bond performance of CFRP bars in seawater and sea sand concrete[J]. Journal of Architecture and Civil Engineering, 2020, 37(5): 113-123 (in Chinese).

    [27] [27] ZENG J J, LIAO J J, ZHUGE Y, et al. Bond behavior between GFRP bars and seawater sea-sand fiber-reinforced ultra-high strength concrete[J]. Engineering Structures, 2022, 254: 113787.

    [28] [28] DAI J Y, YIN S P, LIN F J, et al. Study on bond performance between seawater sea-sand concrete and BFRP bars under chloride corrosion[J]. Construction and Building Materials, 2023, 371: 130718.

    [29] [29] EDUARDA N, JOS S C, LUS C, et al. Review on the bond behavior and durability of FRP bars to concrete[J]. Construction and Building Materials, 2021, 287: 123042.

    [30] [30] LIU T Q, LIU X, FENG P. A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects[J]. Composites Part B: Engineering, 2020, 191: 107958.

    [31] [31] TONG G Q. Experimental research on the bond performance of FRP bars in seawater and sea sand concrete[D]. Changsha: Hunan University, 2020 (in Chinese).

    [32] [32] DAVALOS J F, CHEN Y, RAY I. Effect of FRP bar degradation on interface bond with high strength concrete[J]. Cement and Concrete Composites, 2008, 30(8): 722-730.

    [33] [33] BELARBI A, WANG H Z. Bond durability of FRP bars embedded in fiber-reinforced concrete[J]. Journal of Composites for Construction, 2012, 16(4): 371-380.

    [34] [34] PAN Y F, YAN D M. Study on the durability of GFRP bars and carbon/glass hybrid fiber reinforced polymer (HFRP) bars aged in alkaline solution[J]. Composite Structures, 2021, 261: 113285.

    [35] [35] WANG Z K, ZHAO X L, XIAN G J, et al. Durability study on interlaminar shear behaviour of basalt-, glass-and carbon-fibre reinforced polymer (B/G/CFRP) bars in seawater sea sand concrete environment[J]. Construction and Building Materials, 2017, 156: 985-1004.

    [36] [36] HUANG Z H. Bond-slip behavior between GFRP bar and high strength PE fiber reinforced seawater sea-sand concrete[D]. Guangzhou: Guangdong University of Technology, 2021 (in Chinese).

    [37] [37] CHEN G W. Experimental study on bond behavior between stainless steel rebar and seawater sea-sand concrete under lateral confinement[D]. Dalian: Dalian University of Technology, 2022 (in Chinese).

    [38] [38] MA T, PAN J L, WEI H L. Experimental study of bond behavior between CFRP and concrete under cyclic loading[J]. Building Structure, 2013, 43(19): 15-18+37 (in Chinese).

    [39] [39] WU F W, DUAN J Q, HE L Q, et al. Experimental analysis on bond properties of PVA-ECC and BFRP bars[J]. Journal of Harbin Institute of Technology, 2023, 55(7): 70-79 (in Chinese).

    [40] [40] CHANG Y, WANG Y L, WANG M F, et al. Bond durability and degradation mechanism of GFRP bars in seawater sea-sand concrete under the coupling effect of seawater immersion and sustained load[J]. Construction and Building Materials, 2021, 307: 124878.

    [41] [41] ACHILLIDES Z, PILAKOUTAS K. Bond behavior of fiber reinforced polymer bars under direct pullout conditions[J]. Journal of Composites for Construction, 2004, 8(2): 173-181.

    [42] [42] SALEH N, ASHOUR A, LAM D, et al. Experimental investigation of bond behaviour of two common GFRP bar types in high-strength concrete[J]. Construction and Building Materials, 2019, 201: 610-622.

    [43] [43] SAYED AHMAD F, FORET G, LE ROY R. Bond between carbon fibre-reinforced polymer (CFRP) bars and ultra high performance fibre reinforced concrete (UHPFRC): experimental study[J]. Construction and Building Materials, 2011, 25(2): 479-485.

    [44] [44] LAI Z Y. Study on bond performance between FRP bars with different surface characteristics and seawater sea-sand concrete under FRP confinement[D]. Dalian: Dalian University of Technology, 2022 (in Chinese).

    [45] [45] ZHOU L Z, WAN J T, ZHENG Y, et al. Study on bond behavior of GFRP bars and self-compacting concrete mixed with seawater sea-sand and high-volume fly ash[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2022, 54(2): 211-219+236 (in Chinese).

    [46] [46] LIU H X, YANG J W, WANG X Z. Bond behavior between BFRP bar and recycled aggregate concrete reinforced with basalt fiber[J]. Construction and Building Materials, 2017, 135: 477-483.

    [47] [47] LI T, ZHU H, WANG Q, et al. Experimental study on the enhancement of additional ribs to the bond performance of FRP bars in concrete[J]. Construction and Building Materials, 2018, 185: 545-554.

    [48] [48] LU X Z, YE L P, TENG J G, et al. Bond-slip model for FRP-to-concrete interface[J]. Journal of Building Structures, 2005, 26(4): 10-18 (in Chinese).

    [49] [49] MALVAR L J. Bond stress-slip characteristics of FRP rebar: report TR-2013-SHR[R]. California: Naval Facilities Engineering Service Center, Port Hueneme, 1994.

    [50] [50] ELIGEHAUSEN R, POPOV E P, BERTERO V. Local bond stress-slip relationships of deformed bars under generalized excitations: experimental results and analytical model[R]. California: Earthquake Engineering Research Center, University of California, Berkeley, 1983.

    [51] [51] COSENZA E, MANFREDI G, REALFONZO R. Analytical modelling of bond between FRP reinforcing bars and concrete[C]//“Non-Metallic (FRP) Reinforcement for Concrete Structures”-Proceedings of the Second International RILEM Symposium (FRPRCS-2), 1995: 164-171.

    [52] [52] COSENZA E, MANFREDI G, REALFONZO R. Behavior and modeling of bond of FRP rebars to concrete[J]. Journal of Composites for Construction, 1997, 1(2): 40-51.

    [53] [53] GAO D Y, ZHU H T, XIE J J. The constitutive models for bond slip relation between FRP rebars and concrete[J]. Industrial Construction, 2003, 33(7): 41-43+82 (in Chinese).

    [54] [54] ZHENG Q W, XUE W C. Constitutive relationship of bond-slip behavior of sand-coated deformed GFRP rebars[J]. Engineering Mechanics, 2008, 25(9): 162-169 (in Chinese).

    [55] [55] LIN P X. Bonding properties of GFRP bars and seawater sand PVA cement-based composites (concrete)[D]. Wenzhou: Wenzhou University, 2019 (in Chinese).

    [56] [56] GAO J Q. Experimental study on bond performance between FRP bar with different surface characteristics and sea-sand concrete[D]. Dalian: Dalian University of Technology, 2022 (in Chinese).

    [57] [57] HAO Q D, WANG Y L, HOU J L, et al. Bond-slip constitutive model between GFRP/steel wire composite rebars and concrete[J]. Engineering Mechanics, 2009, 26(5): 62-72 (in Chinese).

    [58] [58] YU Z L. Study on the durability of bonding between FRP bars and seawater sea sand concrete interface[D]. Dalian: Dalian University of Technology, 2022 (in Chinese).

    [59] [59] JIN Q P, ZHOU D, HU Y L. Evolution of bonding behavior of GFRP reinforcement-seawater-sea sand concrete under seawater conditions[J]. China Plastics, 2022, 36(12): 92-99 (in Chinese).

    Tools

    Get Citation

    Copy Citation Text

    KONG Lingyan, LIU Shuchang, BAO Jiuwen, YIN Xiangzhen, CAO Yinlong, CUI Yifei. Research Progress of Interfacial Bond Properties Between FRP Bars and Seawater Sea-Sand Concrete[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(1): 147

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 25, 2023

    Accepted: --

    Published Online: Jul. 29, 2024

    The Author Email: Jiuwen BAO (baojiuwen@qut.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics