Electronics Optics & Control, Volume. 29, Issue 9, 48(2022)

SAR Image Noise Reduction Model Based on GAN

[in Chinese], [in Chinese], [in Chinese], [in Chinese], and [in Chinese]
Author Affiliations
  • [in Chinese]
  • show less
    References(15)

    [1] [1] FROST V SSTILES J ASHANMUGAN K Set al.A model for radar images and its application to adaptive digital filtering of multiplicative noise [J].IEEE Transactions on Pattern Analysis & Machine Intelligence1982PAMI-4(2):157-166.

    [3] [3] KUAN D TSAWCHUK A ASTRAND T Cet al.Adaptive noise smoothing filter for images with signal-dependent noise[J].IEEE Transactions on Pattern Analysis & Machine Intelligence1985PAMI-7(2):165-177.

    [4] [4] DONOHO D.L.De-noising by soft-thresholding[J].IEEE Transactions on Information Theory199541(3):613-627.

    [5] [5] JOY JPETER SJOHN N.Denoising using soft thresholding[J].International Journal of Advanced Research in Electrical Electronics & Instrumentation Engineering 20132(3): 1027-1032.

    [6] [6] DABOV KFOI AKATKOVNIK Vet al.Image restoration by sparse 3D transform-domain collaborative filtering [M]//ASTOLA J TEGIAZARIAN K ODOUGHERTY E R.Image processing:algorithms and systems vi.Bellingham: SPIE(International Society for Optical Engineering), 2008.

    [9] [9] LEE S LZARE M R.Biomedical compound figure detection using deep learning and fusion techniques [J].IET Image Processing201812(6):1031-1037.

    [10] [10] CHANG XJIAO L CLIU Fet al.SAR image despeckling using scale mixtures of Gaussians in the nonsubsampled contourlet domain [J].Chinese Journal of Electronics201524(1):205-211.

    [11] [11] CAO X HJI Y MWANG Let al.SAR image change detection based on deep denoising and CNN [J].IET Image Processing201913(9):1509-1515.

    [12] [12] GOODFELLOW I JPOUGET-ABADIE JMIRZA Met al.Generative adversarial nets[M]//GHAHRAMANI ZWELLING MCORTES Cet al.Advances in neural information processing systems 27.La Jolla:Neural Information Processing Systems (NIPS),2014:2672-2680.

    [14] [14] RADFORD AMETZ LCHINTALA S.Unsupervised representation learning with deep convolutional generative adversarial networks[C]//ICLR2016.doi:10.48550/arXiv.1511.06434.

    [15] [15] HE K MZHANG X YREN S Qet al.Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las VegasNV:IEEE2016.doi:10.1109/CVPR.2016.90.

    [17] [17] WANG P YZHANG HPATEL V M.Generative adversarial network-based restoration of speckled SAR images[C]//IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).Curacao:IEEE2018.doi:10.1109/CAMSAP.2017.8313159.

    [18] [18] WU QFAN C XLI Yet al.A novel perceptual loss function for single image super-resolution[J].Multimedia Tools and Applications202079(29):21265-21278.

    [22] [22] HOR AZIOU D.Image quality metrics:PSNR vs.SSIM[C]//The 20th International Conference on Pattern Recognition.Istanbul:IEEE2010:2366-2369.

    Tools

    Get Citation

    Copy Citation Text

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. SAR Image Noise Reduction Model Based on GAN[J]. Electronics Optics & Control, 2022, 29(9): 48

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 6, 2021

    Accepted: --

    Published Online: Oct. 16, 2022

    The Author Email:

    DOI:10.3969/j.issn.1671-637x.2022.09.010

    Topics